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INTRODUCTION

Talk is about optimization, but equally applicable to image
reconstruction

Structure:
Short intro on ART3, ART3+ and ART3+O
Problem formulation
Solutfion

Numerical results
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An aigorithm is presented for estimating the density distribution in a cross section of
an object from Xray data, which in practice is unavoidably noisy. The data give rise to
a large sparse system of inconsistent equations, not untypically 10° equations with 10°
unknowns, with only about 1% of the coefficients non-zero. Using the physical interpre-
tation of the equations, each equality can in principle be replaced by a pair of inequal-
jties, giving us the limits within which we believe the sum must He. An algorithm is pro-
posed for solving this set of inequalities. The algorithm is basically a relaxation method.
A finite convergence result is proved. In spite of the large size of the system, in the appli-
cation area of interest practical solution on a computer is possible because of the simple
geometry of the problem and the redundancy of equations obtained from nearby X-rays.
The algorithm has been implemented, and is demonstrated by actual reconstructions.




ART3

Solves a noisy large system Ax = b by solving b - e < AXx < b + € via projections

The algorithm iterates over the constraints:

While constraint violations exist

ifa'x<b, -eorax>b +¢
project x onto inequality i (see next slide)
End if
End for
End while
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Two changes compared to ART3

Notational generalization to | < Ax<u
Allows for | = —e« oruy =«
Projection if x; is further than (l+u;)/2 from a;x.

Reflection otherwise

Does not visit constraints cyclically, but keeps a list of violated
constraints and only checks violations of constraints in the list. If a
constraint is not violated, it gets removed from the list. Process repeats

when the list is empty.
Puts focus on the important constraints
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A fast optimization algorithm for multicriteria intensity modulated proton
therapy planning
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Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy
(IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT
planning.

Methods: The authors develop a projection-based solver for a class of convex optimization prob-
lems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicri-
teria optimization, where several optimizations are performed which span the space of possible
treatment plans. The authors describe a plan database generation procedure which is customized to
the requirements of the solver. The optimality precision of the solver can be specified by the user.
Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus
case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the
algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK’s
interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the
projection solver has almost no memory overhead.

Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in
multicriteria treatment planning, which requires the computation of several diverse treatment plans.
Additionally, given the low memory overhead of the algorithm, the method can be extended to
include multiple geometric instances and proton range possibilities, for robust
optimization. ® 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3481566]
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ART3+0O

ART3+ embedded in bisection search for optimization
Linear optimization problem max{ c™x: Ax<b,x=0}

Performs bisection search on the optimal value, given starting
interval [L,U]:

Is {x:cx> (L+U)/2, Ax< b, x=20} empty?
Yes: shrink inferval to [(L+U)/2, U]
No: shrink inferval to [L, (L+U)/2]

Repeat until U-L < ¢




FINITE CONVERGENCE

ART3(+) finds a solution to | £ Ax < u in a finite number of steps if the set
{x 1< Ax<u}is full dimensional

ART3(+) loops infinitely if no solution exists

Question asked by ART3+0O: “is { x : c™x > (L+U)/2, Ax< b, x=0}
empty”?

This question cannot be answered by ART3(+)!




PROBLEM FORMULATION

How to conclude that { x : c'x > (L+U)/2, Ax<b, x 20 } is empty?

ART3+O assumes that the set is empty if ART3+ does not find a
solution after M iterations

Problematic: how to select M2 What happens if ART3+O
incorrectly concludes that a set is empty?




PROPOSED SOLUTION

Theorem 1 (Farkas’ lemma) Exactly one of the following statements is true:
1. There exists an ¥ € R"™ such that Fox =b and x > 0.
2. There exists a y € R™ such that F'y > 0 and bly < —1.

{x:cx>(L+U)/2, Ax< b, x =0} written in the form of the theorem:

R & i Y
(; é?) (51)_(;I)‘ 20, s120, 5220

59



PROPOSED SOLUTION

Theorem 1 (Farkas’ lemma) Exactly one of the following statements is true:
1. There exists an ¥ € R"™ such that Fox =b and x > 0.
2. There exists a y € R™ such that F'y > 0 and bly < —1.

So one of the following sets is empty, while the other set is empty:
1.{x:c™x> (L+U)/2, Ax<b,x=0}

2.{y:—cy, + Aly,20, -(L+U)/2 y, + by, <-1,y,20,y,20}



PROPOSED SOLUTION

To conclude if a value of (L+U)/2 is achievable, run ART3+ in
parallel

One instance on { x : c™x > (L+U)/2, Ax<b,x=0}

One instance on{y : —-cy, + Aly, =20, —(L+U)/2 y, + by, <-1,y, 20,
y,20}

One of the two instances will find a point since ART3+ is finite
convergent




Data: Ae R™", beR". ceR". LeR U R
Result: r that solves max{cT:r c Ar < b,z > 0}.
while U — L >=do "

(L+U)/2 — M;

Call two instances of ART3+ in parallel:

—ct —M
1. to find x such that A < b
—/ 0
c —Al 0
. —J[ bT n —1
{ : 1 Suc a : <
2. to find y such that . 0 (yg) <1
O —1I ()

When one mstance of ART3+ finds a solution. terminate the other instance;
if a feasible x was found then
= L
else
M —=U
end

end



IMAGE RECONSTRUCTION REVISITED

Solve a noisy large system Ax = b by solving b -e < AX<b + £ via
projections

If € is too small, there is no solution

If € Is too large, x does not accurately reconstruct the image

Solution: to test if is foo small, run ART3+ in parallel on:

Aly, —Aly, 20, (bte)ly; - (b -¢€)ly,<-1,y,20,¥,20




NUMERICAL RESULTS

Taken the implementation of ART3+O from the in-house treatment
planning system Astroid and modified it to make it accurately

correspond to its published version, with a stopping criterion of
2 x 107 iterations and € = 0.1 Gy

Three test sets from proton therapy
Small case

Large case

/7 clinical cases spanning 11 patients with different tumor sites




SMALL CASE

227 pencil beams

Maximize min PTV dose (256 voxels) s.t. maximum dose 50 Gy
(8406 voxels)

D matrix 288610 nonzeros (85% sparsity)

CPLEX: 0.8 seconds, optimal value 32.71 Gy
ART3+0: 12.5 seconds, optimal value 32.57 Gy
Proposed method (PM): 2.5 hours, optimal value 32.71 Gy




SMALL CASE

Step L U Farkas Time (s) Iterations
1 0.00 50.00 1 0.1 62,356
2 25.01 50.00 2 1.9 24,948,327
3 25.01 3751 1 0.0 332,498
4 31.26 37.51 2 11.1 147,789,618
D 31.26 34.38 2 3160.4 39.374.210.616
6 31.26 3282 1 0.0 H3.,662
7 32.38 3282 1 0.1 2,477,787
8 32.60 3282 1 1345.9  29,435.448.946
9 32.71 32.82 2 4618.7 57.541.614,242




LARGE CASE

5384 pencil beams
Objective: minimize the maximum dose in 3 x 10° voxels

2 x 10¢ constraints that limit the mean, minimum or maximum dose

CPLEX: 3.5 hours, objective value 50.8 Gy
ART3+0O: 15 minutes, objective value 51.6 Gy

PM proved 26.47 Gy and 39.70 Gy are unachievable in 6 minutes
and 6 hours, respectively

PM was killed after 100 hours and 218 x 107 iterations trying to
prove that 46.32 is unattainable




/7 TEST CASES

ART3+0O does not find a feasible point within the limit of 2 x 107
iterations; limit was increased to 107

Still 2 out of 10 patients incorrectly classified infeasible, affects 13
cases

Remaining 64 cases took between 8.5 seconds and 3:05 hours
(median: 35 minutes)

Suboptimality between 0 and 3.6 Gy (median: 0.2 Gy), less than
0.1 Gyin 13/64 cases

Suboptimality of 3.6 Gy is an issue




/7 TEST CASES

PM was given 1 day of cpu-time (12 hours of wall-clock time)
PM on the 64 cases that ART3+O could solve:
always slower than ART3+0O, hit time limit for 57/64 cases
suboptimality between 0 and 12.5 Gy (median: 1.1 Gy)

outperforms ART3+O by > 0.1 Gy in 14 cases, outperformed in 41 cases

PM on the other 13 cases: suboptimality between 0 and 5.7 Gy
(median 0.2 Gy)

Suboptimality of 12.5 Gy is an issue




DISCUSSION

ART3+ often finds feasible point in the “primal” formulation but not
in the “dual formulation™

Possible explanation: constraints in the primal are often correlated
or redundant (max dose constraint on neighboring voxels)

Dual does not possess this property, because there are no 2
pencil beams that deliver almost the same dose




CONCLUSION

ART3+O cannot guarantee s-optimality and issues do occur

The suggested improvement turns out to be mostly of theoretical
value

Projection methods for optimization currently do not give an
optimality guarantee, and that is a problem




