
Phase II pCT Geant4 code:
short update

George Dedes, Jannis Dickmann, Philipp Wesp, Guillaume Landry
Department of Medical Physics, LMU Munich

Loma Linda pCT workshop 2018

2

History

• Started about 3 years from the code shared by Valentina Giacometti
and Pierluigi Piersimoni

• That code already implemented the pCT phase II scanner geometry in
detail

• The output of the code (ascii or binary) contained already the
information needed by the reconstruction (reconstruction data
output):
 T, V, U coordinates in mm and calibrated WEPL in mm

• Was already versioned in github, contained in the master branch

3

Reconstruction data output
development

• Development in that code (reconstruction data output):
 Cleaning obsolete/commented parts
 Added functionalities that made it easier running in computer clusters
 (passing random number seeds, output paths and file names, etc)
 Added the back then new wedge calibration phantom
 etc

4

Reconstruction data output
pros and cons

• Pros:
 Easy to eventually obtain a reconstructed image from this simulation
 No need to care about calibration and other „real world“ details
 Calibration was performed once in a stand-alone code and hardcoded in the

simulation
 Passing of some arguments from the command line

• Cons:
 Some simple things needed to be done in the source code and then recompile. For

example choosing a phantom
 If for whatever reason the user needed to redo the calibration, the tools were not

readily available
 Calibration wouldn‘t use the same tools already developed for the experimental scans
 By skipping the whole calibration process, the code was very useful for producing an

image quickly, but didn‘t allow for a deeper understanding of all the subtleties of the
scanner

5

Simulation of raw data

• The decision was taken to have a code that simulates the real
scanner response and the output data as realistically as possible

• What was already there:
 The main part of the code that created the digitized output of the trackers

(#FPGA, #chip, #strip)
 A simple digitization of the energy detector output (#ADC)

• What needed to be still done:
 Make the code more realistic wherever possible
 Interface the code with the existing preprocessing software (wasn‘t really done)
 Add new phantoms
 Test it, clean it, debug it, etc

• What could be added:
 Many things, among others an easy way to run the code via macro input files

• The reconstruction data output version is not lost:
 The code is in the master branch of the github repository
 To make finding this code simple in the future, it is tagged as version v1.1
 Due to limited resources, I don‘t do any further development in that code. Only

bugfixes
 Eventually the more realistic version of the code will be merged into the master

branch as v2.X. The reconstruction data output will be always reachable as v1.X. It
might be moved to a separate branch

• The raw data output version:

 It is currently contained in the branch called stripified and frequently updated
 It receives constant development and maintenance from the LMU team and

occasionally from other users
 It is in development status: not clean, bugs are not to be ruled out, changes often

Current status of code

6

• As mentioned, currently in the stripified branch

• Output data:
 For every proton: #FPGA, #chip, #strip, #ADC

• Realistic data:
 Our scanner doesn‘t have a homogeneous T-V response. This is corrected in the

preprocessing. The Geant4 code simulates a realistic T-V response
 The #ADC for every proton contains detector resolution and a pedestal
 Changed polysterene RSP to match the one of the real phantom
 A few days ago it was found that small differences between simulation and experiment

originate from the light production saturation. Although we don‘t simulate optical
photons, Birk‘s effect is now parameterized in the simulation

Raw data output code

7

• The geometry of the scanner hasn’t changed (detailed):

Raw data output code

8

• Phantoms:
 All the existing ones: CTP404, Edge, Catphan, Water, …
 Refined Water phantom to add walls
 Wedge phantom and bricks for the calibration
 To be added by September: read in of the pediatric head phantom in DICOM form

• Beams:
 Simulation of several simple beams as well as reading of phase space data

• Messenger (input file functionality):
 The code was modified in order to be customizable via input macro files
 For most of the things a user might need to do, no writing of code/recompilation is

needed
 A new phantom will have to implemented in C++, but this can be done upon request

Raw data output code

9

• Simulation workflow (same as for experimental data):
 Simulate calibration runs: „empty“ run, wedge + 0, 1, 2, 3, 4 bricks (binary data)
 Simulate N projections (angles) of whatever phantom (imaging scan - binary data)
 Process with our preprocessing software the calibration runs
 -> get Wcalib.txt and TVcorr.txt
 As the simulated setup is „static“, there is no need to resimulate and reprocess the

calibration for every imaging scan simulation (might add to the repository the latest
Wcalib and Tvcorr files)

 Preprocess the imaging scan using the Wcalib.txt and Tvcorr.txt
 -> get your data for reconstruction (binary data with T,V,U and WEPL in mm)
 Reconstruct image

Raw data output code

10

• Where can I find step-by-step instructions?
 Last week we started a wiki page in github
 Incomplete right now
 -> will be more useful in the coming weeks
 Intention to start a forum webpage

Raw data output code

11

Raw data output code

12

• Where can I find step-by-step instructions?
 Last week we started a wiki page in github
 Incomplete right now
 -> will be more useful in the coming weeks
 Intention to start a forum webpage

• How to run the code:
 To run the code simply type: ./pCT_phaseII run.mac
 pCT_phaseII is the executable created when compiling the code
 run.mac (it can have any name) is the input macro file
 An example run.mac exists in github

Raw data output code

13

• How to run the code:
 To run the code simply type: ./pCT_phaseII run.mac
 pCT_phaseII is the executable created when compiling the code
 run.mac (it can have any name) is the input macro file
 An example run.mac exists in github

• A couple of example imput macro commands:
 Choose phantom

Raw data output code

14

• How to run the code:
 To run the code simply type: ./pCT_phaseII run.mac
 pCT_phaseII is the executable created when compiling the code
 run.mac (it can have any name) is the input macro file
 An example run.mac exists in github

• A couple of example imput macro commands:
 Set rotation angle

Raw data output code

15

• How to run the code:
 To run the code simply type: ./pCT_phaseII run.mac
 pCT_phaseII is the executable created when compiling the code
 run.mac (it can have any name) is the input macro file
 An example run.mac exists in github

• A couple of example imput macro commands:
 Set calibration brick thickness

Raw data output code

16

• How to run the code:
 To run the code simply type: ./pCT_phaseII run.mac
 pCT_phaseII is the executable created when compiling the code
 run.mac (it can have any name) is the input macro file
 An example run.mac exists in github

• A couple of example imput macro commands:
 Choose where to write your results

Raw data output code

17

• How to run the code:
 To run the code simply type: ./pCT_phaseII run.mac
 pCT_phaseII is the executable created when compiling the code
 run.mac (it can have any name) is the input macro file
 An example run.mac exists in github

• A couple of example imput macro commands:
 Choose beam type, location and energy

Raw data output code

18

• A few validation results:

Raw data output code

19

• A few validation results:

Raw data output code

20

Experiment Simulation wo Birk‘s effect

• A few validation results:

Raw data output code

21

Experiment Simulation with Birk‘s effect

• A few validation results:

Raw data output code

22

wo Birk‘s effect

• A few validation results:

Raw data output code

23

wo Birk‘s effect

• Vladimir Bashkirov and Reinhard Schulte for
hosting me multiple times in Loma Linda and discussing the subtle detector effects
and parameterizations

• Robert Johnson for
investing in Santa Cruz last year and since then time to interface the Geant4 code
with the preprocessing software

• Valentina Giacometti and Pierluigi Piersimoni for
sharing all their existing Geant4 code

• Stuart Rowland for
triggering the documentation of the code with his questions

Many thanks to:

24

	Phase II pCT Geant4 code:�short update
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

