

TOPAS-nBio for water radiolysis simulation

José Ramos-Méndez, PhD and Bruce Faddegon, PhD

Department of Radiation Oncology.

8/14/18

Outline

What?

Why?

How?

Radiolysis of water

- DNA damage.
 - Formation of single-strand breaks.
 - Identification of clustered damage.
- Free radicals in radiation biology
 - Reactive oxygen
 - Radical repair by thiols
 - Cell signaling and bystander response
- Cancer treatment and diagnosis
 - Radiosensitizers –nitric oxide
 - Hypoxia
 - Radiation detector Fricke dosimeter

Formation of single-strand breaks by reaction of hydroxyl radical adducts of DNA bases with nitroimidazoles. From O'Nell and Wardman 2009, based on extensive search survey by von Sonntag (2006), *cf.* (Bamatraf et al. 1998, Wardman 2007a, 2009b)

Radiolysis of water

Condensed-history Monte Carlo

Radiolysis of water

- Track structure Monte Carlo codes are usually difficult to obtain.
- Geant4 Collaboration's¹ project: Geant4-DNA^{2,3}.
 - Steep learning curve.
- University of California San Francisco, Massachusetts General Hospital & SLAC National Laboratory developed TOPAS³ to facilitate MC for radiotherapy.
- TOPAS-nBio^{4,5,6} to facilitate MC track-structure simulations.

¹Agostinelli, S. *et al.* (2003) *Nucl. Inst. and Methods in Phys. Res. A*, 506(3), 250–303.
²Incerti, S. *et al.* (2010) *Med. Phys.*, 37(9), 4692–4708.
³Bernal, M. A. *et al.* (2015) *Physica Medica*, 31(8), 861–74.
⁴Perl, J. *et al.* (2012) *Med. Phys.*, 39, 6818–6837.
⁵McNamara, A. *et al.* (2017) *", Physica Medica*, 33, 207–215.
⁶Ramos-Mendez, J. *et al.* (2018) *Phys. Med. Biol..* doi:10.1088/1361-6560/aac04c.

University of California San Francisco

TOPAS-nBio Monte Carlo track structure simulations

8/14/18

Mechanistic

Radiolysis of water – *Pre-chemical stage (10-15-10-12s)*

Process		Decay channel	Prob (%)
Ionization	Dissociative	Н О+ + •ОН	100
state	decay	11_{3} + 011	100
A ¹ B ₁	Dissociative	•OU + U•	65
	decay	Оптп	
	Relaxation	$H_2O + \Delta E$	35
B ¹ A ₁	Auto-		55
	ionization	$H_3O^{+} + OH^{+}e_{aq}$	
	Auto-	•••••••••••••••••••••••••••••••••••••••	15
	ionization	$OH + OH + H_2$	
	Relaxation	$H_2O + \Delta E$	30
Rydberg,	Auto-		50
diffuse	ionization	$H_3O^2 + OH + e_{aq}$	
bands	Relaxation	$H_2O + \Delta E$	50

Radiolysis of water – Chemical stage (10-12-10-6s)

- Species move under Brownian motion
- Totally diffusion-controlled reactions A + B \xrightarrow{k} Products

B

$$p(\mathbf{r}, t | \mathbf{r_0}) = \frac{1}{(4\pi D t)^{n/2}} \exp\left[-\frac{(\mathbf{r} - \mathbf{r_0})^2}{4D t}\right]$$

Radiolysis of water – Chemical stage (10-12-10-6s)

	Reaction rate constant $k_{obs }(10^{10} \text{ M}^{-1}\text{s}^{-1})$			
Reaction	Geant4-DNA	TOPAS-nBio		
	Default			
$e_{aq}^- + e_{aq}^- \rightarrow H_2^- + 20H^-$	0.5	0.647		
$e_{aq}^{-} + \cdot OH \rightarrow OH^{-}$	2.95	2.95		
$e_{aq}^{-} + H^{-} \rightarrow H_2 + OH^{-}$	2.65	2.65		
e_{aq}^{-} + $H_3O^+ \rightarrow H^+$	2.11	2.11		
$e_{aq}^{-} + H_2O_2 \rightarrow OH^- + \cdot OH$	1.41	1.41		
$\cdot OH + \cdot OH \rightarrow H_2O_2$	0.44	0.475		
$\cdot OH + H \cdot \rightarrow H_2O$	1.44	1.44		
$H^{\bullet} + H^{\bullet} \rightarrow H_2$	1.2	0.503		
$H_3O^+ + OH^- \rightarrow H_2O$	14.3	11.0		
$\cdot OH + H_2 \rightarrow H$	-	0.0045		
$\cdot OH + H_2O_2 \rightarrow HO_2$	-	0.0023		
$\cdot OH + HO_2 \rightarrow O_2$	-	1.0		
$\cdot OH + O_2^- \rightarrow O_2 + OH^-$	-	0.9		
$\cdot OH + HO_2^- \rightarrow HO_2 + OH^-$	-	0.5		
$e_{aq}^{-} + HO_2 \rightarrow HO_2 -$	-	2.0		
$e_{aq}^{-} + O_2^{-} \rightarrow O_2^{-}$	-	1.9		
$e_{aq}^- + O_2^- \rightarrow OH^- + HO_2^-$	-	1.3		
•H + H ₂ O ₂ →•OH	-	0.01		
\cdot H + HO ₂ \rightarrow H ₂ O ₂	-	2.0		
\cdot H + O ₂ \rightarrow HO ₂	-	2.0		
$H + OH - \rightarrow e_{aq}$	-	0.002		
$H + O_2^- \rightarrow HO_2^-$	-	2.0		
$H_3O^+ + O_2 - \rightarrow HO_2$	-	3.0		
$H_3O^+ + HO_2 - \rightarrow H_2O_2$	-	2.0		
$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	-	0.000076		
HO_2 + O_2 - \rightarrow 02 + HO_2 -	-	0.00274		

Chemical species	Name in TOPAS- nBio	Diffusion cod (10 ⁻⁹ m ² s ⁻¹) at 2 Geant4-DNA Default	efficients D 25°C TOPAS- nBio	Reaction radius (nm)
e -₂a	SolvatedElectron	4.9	4.9	0.5
·OH	Hydroxyl	2.8	2.2	0.22
н∙	Hydrogen	7.0	7.0	0.19
H_3O^+	Hydronium	9.0	9.46	0.25
H ₂	Dihydrogen	5.0	4.8	0.14
OH-	Hydroxide	5.0	5.3	0.33
H_2O_2	HydrogenPeroxide	1.4	2.3	0.21
02	Oxygen	-	2.1	0.17
O 2 ⁻	SuperoxideAnion	-	2.1	0.22
HO ₂	HydroPeroxide	-	2.0	0.21
HO ₂ -	Dioxidanide	-	2.0	0.25

 M. S. Kreipl, W. Friedland, and H. G. Paretzke, "Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation," *Radiat. Environ. Biophys.*, vol. 48, no. 1, pp. 11–20, 2009.
 J. Ramos-Mendez, J. Perl, J. Schuemann, A. McNamara, H. Paganetti and B. Faddegon "Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio" *Phys Med Biol.* 64, 105104-12pp (2018)
 S. Uehara and H. Nikjoo, "Monte Carlo simulation of water radiolysis for low-energy charged particles.," *J. Radiat. Res.*, vol. 47, no. 1, pp. 69–81, 2006.

Radiolysis of water – Ongoing work

G-values: Yield of chemical species per 100 eV of deposited energy.

Ramos-Mendez J, et. al., Phys Med Biol. 64, 105104-12pp (2018)

Independent reaction times.

Pair

1+2

1+3

1+4

2+3

2+4

3+4

t, /ps

12

27

40

8

125

œ

r,,/nm

1.3

2.1

1.0

11

17

1.8

Reaction

х

х

2

×

- Alternative to the step-by-step Monte Carlo for the chemistry stage.
- It is an stochastic method developed more than 30 years ago¹.

Totally diffusion-controlled reactions

$$W(r,t) = \frac{R_{eff}}{r_{eff}} = \operatorname{erfc}\left(\frac{r_{eff} - R_{eff}}{\sqrt{4D't}}\right)$$

Partially diffusion-controlled reactions

$$W(r,t) = \frac{R_{eff}\alpha + 1}{r_{eff}\alpha} \left[-F\left(\frac{r_{eff} - R_{eff}}{\sqrt{4D't}}, -\alpha\sqrt{D't}\right) + \operatorname{erfc}\left(\frac{r_{eff} - R_{eff}}{\sqrt{4D't}}\right) \right]$$
$$F(x,y) = \exp\left(2xy + y^2\right)\operatorname{erfc}\left(x + y\right)$$

From Green et. al. J. Phys. Chem. 1990

¹Clifford et. al. J. Chem. Soc., Faraday Trans 1, 1986

13

15

Conclusion

- TOPAS-nBio wraps and extends Geant4-DNA for trackstructure simulations.
- It provides with high flexibility to combine complex geometry volumes with sophisticated scoring routines.
- It facilitates the validation of Geant4-DNA.
- Still an alpha version, so new users are welcome.

Acknowledges

- NIH grants 1R01CA187003 and 1P20CA183640.
- TOPAS and TOPAS-nBio Collaboration.
- Naoki Dominguez from Benemérita Universidad Autónoma de Puebla, México.
- Dr. Aimee McNamara from Massachusetts General Hospital.
- Dr. Ianik Plante, NASA.
- Geant4-DNA Collaboration, Sebastien Incerti and Mathieu Karamitros.
- Dr. Eduardo Moreno from Benemérita Universidad Autónoma de Puebla, México.

