The impact of secondary fragments on helium CT

Lennart Volz^{1,2}, P. Piersimoni¹, V. A. Bashkirov³, S. Brons⁴, C.-A. Collins-Fekete⁵, R. P. Johnson⁶, R. W. Schulte³ and J. Seco^{1,2}

l.volz@dkfz-heidelberg.de

- [1] Dep. Biomedcical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, GE
- [2] Dep. of Physics and Astronomy, Heidelberg Universiy, Heidelberg, GE
- [3] Dep. Basic Sciences, Div. Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
- [4] Chemical, Medical and Environmental Science, NPL, Teddington, UK
- [5] Heidleberg Ion-Beam Thearpy Center (HIT), Heidelberg, GE
- [6] SCIPP, University of California at Santa Cruz, Santa Cruz, CA, USA

Team: Biomedical Physics in Radiation Oncology

- Joint project with Dr. Pierluigi
 Piersimoni
- Project collaborators:
 U.S. pCT collaboration
 Heidelberg Ion-Beam Therapy Center
- Biomedical Physics in Radiation
 Oncology (Prof. Joao Seco):
 Model early radiation effects, Prompt
 gamma, Particle Imaging

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Overview

- Introduction
- Filtering fragmentation events
- Results
- Outlook: Application to pCT
- Conclusion

Introduction

- Piersimoni et al. (2017)

Rationale for helium imaging

• Lower multiple Coulomb scattering compared to protons ($\sigma_{sc}^{He} = 0.5\sigma_{sc}^{p}$)

• Higher achievable spatial resolution^{1,2}

• Lower energy/range straggling compared to protons $(\sigma_{st}^{He} \cong 0.5 \sigma_{st}^{p})$

Higher achievable precision³

Lower dose and less fragmentation

compared to heavier ions⁴

Rising interest in helium ion therapy⁴

at fixed range (~26cm).¹

¹ Collins-Fekte et al. (2017); ² Piersimoni et al. (2018); ³ Gehrke et al. (2018); ⁴ Mairani et al. (2016)

Fragmentation events

- Target and projectile fragmentation
- Projectile fragments only receive a minor shift in velocity/direction^{1,2}
- Fragmentation in the object and the detector possible
- Projectile fragments readily detected by the scanner, not readily identified

 Schematic depiction of the mixing of fragments and primary beam energy loss in helium CT.

Method to remove fragmentation events required

Operating a pCT prototype with helium beams

Experiment

• The U.S. pCT collaboration prototype installed at the HIT beam line dedicated to experiments.

TOPAS MC simulation

 TOPAS implemented detector geormetry.¹

Calibration

 The Calibration setup as performed at HIT.

 Depiction of the wedge calibration procedure.¹

¹ Piersimoni et al. (2018);

Beam settings and scanning experiment

- Experiments conducted at the beam line dedicated to experiments at HIT ¹
- Experiment: Raster scanning (10.8 mm FWHM spots)
 Simulation: Flat ideal source
- Experiment: ~2.5 · 10⁶ part./proj. (~800kHz)
 Simulation: 2 · 10⁶ part./proj
 - $\mathsf{E}_{in}=200~MeV/u$
- 90 projections at 4° angular step ²

Beam nozzle dedicated to experiments.

¹ Harberer et al. (2004)

Filtering of Fragments

- Piersimoni et al. (2017)

ΔE – E Technique

Idea: Use the 5 stage energy/range detector as $\Delta E - E$ telescope!

- dE/dx = f(Zp, Ap)
- Energy loss measured in thin ΔE stage, residual energy E in a thick absorber after
- Enables particle identification in mixed radiation beams

ΔE – E Technique

Idea: Use the 5 stage energy/range detector as $\Delta E - E$ telescope!

- E defined as the energy deposit in the stage where the particle stops
- ΔE defined as the energy deposit for the same event in the adjacent stage
- Parametrization of the primary helium line in the spectrum enables filtering

Filtering workflow

- 1. No filtering of fragmentation/nuclear interaction events
- 2. Threshold filter ¹
- **3.** ΔE -E filter

¹ used as standard with the pCT prototype;

Filtering workflow: Threshold filter ¹

Results

- Piersimoni et al. (2017)

ΔE-E spectra

- Simulated ΔE-E spectrum with threshold filter (dashed black) and ΔE-E filter (dashed red).
- Experimental ΔE -E spectrum.

- Mauscript in review by PMB

 Schematic depiction of the Water phantom

- Hollow plastic cylinder filled with purified and degasified water (G4_WATER in simulation)
- 150 mm diameter, 6.35 mm shell thickness,6.35 mm top and bottom seals

 HeCT reconstructed images of the water phantom with different filtering settings.

- Mauscript in review by PMB

150 mm

6.35 mm

Simulation

• Traverse profile of the HeCT reconstructed simulated water phantom.

• Traverse profile of the experimental HeCT.

- Mauscript in review by PMB

Simulation

 RSP distribution of the HeCT reconstructed simulated water phantom. RSP distribution of the experimental HeCT.

- Mauscript in review by PMB

Relative stopping power accuracy

• Catphan® CTP404 module.

- Epoxy cylinder with different plastic material inserts
- RSP measured in a ROI of 3 mm radius in the center of the inserts and averaged over the 9 most central slices

 HeCT reconstructed images of the Catphan[®] CTP404 with different filtering settings.

- Mauscript in review by PMB

Air

(1)

Relative stopping power accuracy

- Mauscript in review by PMB

image of the CTP404 showing LDPE and delrin.

• Relative error of the RSP reconstructed for the CTP404 material inserts.

- Mauscript in review by PMB

Application pCT

- Piersimoni et al. (2017)

ΔE-E spectrum for pCT: Preliminary simulation results Maximum E_{dep}

 ΔE-E spectrum for a simulated pCT of an ideal water cylinder. ΔE-E spectrum after the 3σ filter and standard cuts are applied.

pCT of an ideal water cylinder: Preliminary simulation results

- Traverse profile through the pCT reconstructed image of an ideal water cylinder.
- RSP distribution in the center of the pCT reconstructed ideal water cylinder.

Conclusion

- Piersimoni et al. (2017)

Take home message

- Fragmentation processes were shown to cause sytematic uncertainties to HeCT visible as ring artifacts and low RSP accuracy
- The devloped ΔE-E filter effectively removes nuclear interaction noise/fragments and the correlated systematic errors
- The ΔE-E filter is applicable for all energy measuring detectors with longitudinal segmentation
- The filter works also for different ion types
 → HeCT and pCT
 ▲ Carbon CT (investigated)
 - → Carbon CT (investigated...)

With the ΔE -E filter accurate HeCT (and pCT) is possible

