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Introduction to proton CT imaging
Stopping power and water equivalent path length
Definition
Stopping power: energy loss of the proton per unit length (MeV/cm);
dE
S(E) = ——. 1
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Introduction to proton CT imaging
Stopping power and water equivalent path length

Definition
Stopping power: energy loss of the proton per unit length (MeV/cm);
dE
S(E)=——.
(E) T
Definition
Water equivalent path length (WEPL): total length of path travelled by a proton in water;
E; 1
WEPL = ———dE.
Ee S(E)

()
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Introduction to proton CT imaging

Overview

» Seek to solve a system of linear equations AX = b
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Introduction to proton CT imaging

Overview

» Seek to solve a system of linear equations AX = b

> aJ’: is the path length of the i-th proton through the j-th voxel
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Introduction to proton CT imaging

Overview

» Seek to solve a system of linear equations AX = b
> aJ’: is the path length of the i-th proton through the j-th voxel
» b; is the WEPL of the i-th proton
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Introduction to proton CT imaging

Overview

» Seek to solve a system of linear equations AX = b
> aJ’: is the path length of the i-th proton through the j-th voxel
» b; is the WEPL of the i-th proton

> Xx; is the relative stopping power (RStP) in the j-th voxel
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» Seek to solve a system of linear equations AX = b
> aJ’: is the path length of the i-th proton through the j-th voxel
» b; is the WEPL of the i-th proton

> Xx; is the relative stopping power (RStP) in the j-th voxel
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Introduction to proton CT imaging

Overview
» Seek to solve a system of linear equations AX = b

> aJ’: is the path length of the i-th proton through the j-th voxel

» b; is the WEPL of the i-th proton

> Xx; is the relative stopping power (RStP) in the j-th voxel
Definition
Relative stopping power (RStP): the ratio of the stopping power in the material of interest to

that in water at the same energy;

RStP = $(E) = ;f(?)' (3)
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Introduction to proton CT imaging
Why use protons?

» In clinical practice RStP is estimated by conversion of X-ray CT Hounsfield via an
empirically derived calibration curve
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Introduction to proton CT imaging
Why use protons?

» In clinical practice RStP is estimated by conversion of X-ray CT Hounsfield via an
empirically derived calibration curve

» This approach can lead to errors in stopping power of up to 3% [Smith, 2009; Jiang et al.,

2007]
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Introduction to proton CT imaging
Why use protons?

» In clinical practice RStP is estimated by conversion of X-ray CT Hounsfield via an
empirically derived calibration curve

» This approach can lead to errors in stopping power of up to 3% [Smith, 2009; Jiang et al.,
2007]

» pCT is an alternative approach in which RStP of the patient is measured directly with an
energetic proton beam

LLU-Aug-2018 Inhomog. MLP formalism for pCT mark.brooke@oncology.ox.ac.uk ©@markdanbrooke 13



NIVERSITY OF %5 CANCER

CRUK/MRC Oxford Institute for Radiation Oncology XFORD [ S

OXFORD
CENTRE

Introduction to proton CT imaging
Why use protons?

» In clinical practice RStP is estimated by conversion of X-ray CT Hounsfield via an
empirically derived calibration curve

» This approach can lead to errors in stopping power of up to 3% [Smith, 2009; Jiang et al.,
2007]

» pCT is an alternative approach in which RStP of the patient is measured directly with an
energetic proton beam

» In iterative pCT reconstruction, one may first assume the imaged object is made purely of
water

LLU-Aug-2018 Inhomog. MLP formalism for pCT mark.brooke@oncology.ox.ac.uk ©@markdanbrooke 14



CRUK/MRC Oxford Institute for Radiation Oncology XFORD [ S

UNIVERSITY OF %5 CANCER OXFORD

CENTRE

751

Introduction to proton CT imaging
Why use protons?

>

In clinical practice RStP is estimated by conversion of X-ray CT Hounsfield via an
empirically derived calibration curve

This approach can lead to errors in stopping power of up to 3% [Smith, 2009; Jiang et al.,
2007]

pCT is an alternative approach in which RStP of the patient is measured directly with an
energetic proton beam

In iterative pCT reconstruction, one may first assume the imaged object is made purely of
water

On each successive iteration the internal composition may be updated
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Most likely path of protons

Importance

» Protons do not move in straight lines
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Most likely path of protons

Importance

» Protons do not move in straight lines

» Multiple Coulomb scattering (MCS) poses a challenge in pCT image reconstruction
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Most likely path of protons

Importance

» Protons do not move in straight lines
» Multiple Coulomb scattering (MCS) poses a challenge in pCT image reconstruction

» Assumption of straight line paths is replaced with Bayesian models of the most likely path
(MLP) [Williams, 2004; Schulte et al., 2008]
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Most likely path of protons

Importance

» Protons do not move in straight lines
» Multiple Coulomb scattering (MCS) poses a challenge in pCT image reconstruction

» Assumption of straight line paths is replaced with Bayesian models of the most likely path
(MLP) [Williams, 2004; Schulte et al., 2008]

» MLP is currently calculated under the assumption that the imaged body consists entirely
of water
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Most likely path of protons

Importance

» Protons do not move in straight lines
» Multiple Coulomb scattering (MCS) poses a challenge in pCT image reconstruction

» Assumption of straight line paths is replaced with Bayesian models of the most likely path
(MLP) [Williams, 2004; Schulte et al., 2008]

» MLP is currently calculated under the assumption that the imaged body consists entirely
of water

» We present an MLP formalism that takes into account the inhomogeneous composition of
the human body
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Most likely path of protons

Bayesian formalism

» Matrix-based MLP formula [Schulte et al., 2008]
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Most likely path of protons

Bayesian formalism

» Matrix-based MLP formula [Schulte et al., 2008]

» Uses Bayesian probability theory
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Most likely path of protons

Bayesian formalism
» Matrix-based MLP formula [Schulte et al., 2008]
» Uses Bayesian probability theory

> Uses entry and exit information to infer most likely trajectory through water
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Most likely path of protons

Bayesian formalism

» Matrix-based MLP formula [Schulte et al., 2008]
» Uses Bayesian probability theory
> Uses entry and exit information to infer most likely trajectory through water

» the most likely lateral position t; and angular deflection 6; at an intermediate depth vy
T . . .
are represented by the vector y; = ( tp 61 ) , given the respective entry and exit

conditions, yin =yo = ( to o )T andyour=y2=( t2 62 )T

LLU-Aug-2018 Inhomog. MLP formalism for pCT mark.brooke@oncology.ox.ac.uk @markdanbrooke 24
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Most likely path of protons
Bayesian formalism
A
t, 8
P-u
u, u, u,
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Most likely path of protons
Bayesian formalism
» The MLP is calculated by Equation (24) in [Schulte et al., 2008];
-1
ywe = (1 + RT3 R) T (X5 Rovo + RUT5 2 ) (4)
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Most likely path of protons
Bayesian formalism
» The MLP is calculated by Equation (24) in [Schulte et al., 2008];
-1
ywr = (T2 + RIE,"Ry) (£ Royo + RI T3 y2) (4)

» Ry and R; are change-of-basis matrices,

(1 wm—u (1 w—u
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Most likely path of protons

Bayesian formalism

» The MLP is calculated by Equation (24) in [Schulte et al., 2008];
-1
ywir = (50 + RIS "Ry) (0" Rovo + RT3z )

» Ry and R; are change-of-basis matrices,

(1 wm—u (1 w—u
oo 1) m=(o ")

» Y ; and X, are the covariance matrices,

2 2 2 2
5. Ot Oto, v — Ot,  Ot0,
17\ o2 o2 ’ 27\ o2 ot
t101 01 t202 02

(4)
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Most likely path of protons

Bayesian formalism
Definition
Scattering power: the rate of increase, with depth u, of the mean square of the projected scattering
angle 0;

()= 40, (7)
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Most likely path of protons
Bayesian formalism
Definition
Scattering power: the rate of increase, with depth u, of the mean square of the projected scattering
angle 0;
d{6®)
T = . 7
(0= )

> Elements of the covariance matrices in (6), known as scattering moments, given by (for i = 1,2)
o, = Ao(u)) = / T(n)dn, (8)
Ui—1

ohe, = Aiu) = / (ui =m) T (n)dn, (9)

i—1

=) = [ @-nPTwadn (10)

i—1
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Most likely path of protons

Bayesian formalism

» The variance in lateral displacement is given by the (1,1) matrix element of (11) [Schulte
et al., 2008];

— _ —1
€no, =2 (T + RUETRY) . (11)

LLU-Aug-2018 Inhomog. MLP formalism for pCT mark.brooke@oncology.ox.ac.uk ©@markdanbrooke 31




NIVERSITY OF %5 CANCER

CRUK/MRC Oxford Institute for Radiation Oncology XFORD [ S

OXFORD
CENTRE

Most likely path of protons

Bayesian formalism

» The variance in lateral displacement is given by the (1,1) matrix element of (11) [Schulte
et al., 2008];

_ _ —1
€no, =2 (T + RUETRY) . (11)

» This error matrix may be used to define a probability envelope surrounding the most likely
path.
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Gottschalk’s method [Gottschalk, 2010] has been used to approximate the scattering
power T(u) at depth u as

() = 27 (mec?)”

T+1\? 1 1
T+2) E2(u) X,
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Gottschalk’s method [Gottschalk, 2010] has been used to approximate the scattering
power T(u) at depth u as

() = 27 (mec?)”

T+1\? 1 1
T+2) E2(u) X,

» E(u) is the depth-dependent kinetic energy of the proton
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Gottschalk’s method [Gottschalk, 2010] has been used to approximate the scattering
power T(u) at depth u as

2
T(u) = %W (mee?)” (:B) Ezl(U)Xis "

» E(u) is the depth-dependent kinetic energy of the proton

» 7= E(u)/m,c? is the reduced kinetic energy of the proton
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Gottschalk’s method [Gottschalk, 2010] has been used to approximate the scattering
power T(u) at depth u as

2
2w 2 (T+1 1 1
T(u) == (mec® —
() a (mec?) <7‘+2> E?(u) Xs
» E(u) is the depth-dependent kinetic energy of the proton

» 7= E(u)/m,c? is the reduced kinetic energy of the proton
» Gottschalk introduced the scattering length 1/X;, given by

Xi = aNap <mE2c2)2 % {2 In [33219(AZ)*1/3] - 1}
S }

where p is the mass density.

(12)

(13)

aaaaaaaaaa
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Inhomogeneous MLP formalism
Calculation of scattering moments

» If the composite material consists of n elements, each with fractional weight per volume
O<wi <1l k=1,...,nthen

1 n 1
== wi | —— 14
x=r 2 (x), 04

where p is the density of the composite material.

LLU-Aug-2018 Inhomog. MLP formalism for pCT mark.brooke@oncology.ox.ac.uk ©@markdanbrooke

37

751



UNIVERSITY OF %5 CANCER

CRUK/MRC Oxford Institute for Radiation Oncology XFORD [y

OXFORD
CENTRE

by UK

Inhomogeneous MLP formalism
Calculation of scattering moments

» If the composite material consists of n elements, each with fractional weight per volume
O<wi <1l k=1,...,nthen

1 n 1
== wi | —— 14
x=r 2 (x), 04

where p is the density of the composite material.
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Inhomogeneous MLP formalism
Calculation of scattering moments
» If the composite material consists of n elements, each with fractional weight per volume

O<wi <1l k=1,...,nthen
(14)

1 n 1
1S (L
x=r 2 (x),

where p is the density of the composite material.

Definition
Relative scattering power (RScP): the ratio of the scattering power in the material of interest
to that in water;
N T
RScP=T = —. (15)
Tw

@markdanbrooke 39
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Inhomogeneous MLP formalism
Calculation of scattering moments

» RScP is simply the ratio of scattering lengths and is thus energy independent.

John Monash
Foundation
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Calculation of scattering moments

» RScP is simply the ratio of scattering lengths and is thus energy independent.

» It can be shown that

p ZA, | 19.8218 — 2 In(ZA)

pw ZwA |19.8218 — 2 In(ZywAw)

7’\-:

where the subscript 'w’ refers to the value for water.
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NIVERSITY OF

CRUK/MRC Oxford Institute for Radiation Oncology

Inhomogeneous MLP formalism
Calculation of scattering moments

B CANCER
B RESEARCH
by UK

OXFORD
CENTRE

» RScP is simply the ratio of scattering lengths and is thus energy independent.

» It can be shown that

p ZA, | 19.8218 — 2 In(ZA)

pw ZwA |19.8218 — 2 In(ZywAw)

7’\-:

where the subscript 'w’ refers to the value for water.

» We can now calculate the scattering power at any depth u using

(16)
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Tw(u) requires the kinetic energy of the proton to be known at depth u

John Monash
Foundation
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Tw(u) requires the kinetic energy of the proton to be known at depth u

» Use definition of stopping power and RStP to estimate the kinetic energy
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Tw(u) requires the kinetic energy of the proton to be known at depth u
» Use definition of stopping power and RStP to estimate the kinetic energy
» Forward Euler method:

Ef = E1 = SSu(Ef)ou, j=1,....N,

OXFORD
CENTRE
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Tw(u) requires the kinetic energy of the proton to be known at depth u

» Use definition of stopping power and RStP to estimate the kinetic energy

» Forward Euler method:

Ef = Ef, — §5Su(Ef)ou, j=1,...,N, (18)

» Backward Euler method:
EE = EB, + §;Sw(Ef )6u, j=0,...,N—1 (19)
mark.brooke@oncology.ox.ac.uk ©@markdanbrooke 46
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Calculation of scattering moments

» Tw(u) requires the kinetic energy of the proton to be known at depth u

v

Use definition of stopping power and RStP to estimate the kinetic energy

v

Forward Euler method:
EF =Ef, — §Su(Ef)ou, j=1,...,N, (18)

Backward Euler method:

v

EE = EB, + §;Sw(Ef )6u, j=0,...,N—1 (19)

v

§j is the RStP at discrete depth u;

LLU-Aug-2018 Inhomog. MLP formalism for pCT mark.brooke@oncology.ox.ac.uk ©@markdanbrooke a7
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Stopping powers in water can be determined using the Bethe-Bloch formula,

dE\ 47 po [ € \’[ [ 2m.c2p?
(@)= e (i) () -2 (20)

S(E)

751
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Stopping powers in water can be determined using the Bethe-Bloch formula,

o (2) s (bS]

> pe is the electron number density of the material and [/ is the mean excitation potential
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Inhomogeneous MLP formalism
Calculation of scattering moments

» Stopping powers in water can be determined using the Bethe-Bloch formula,

o (2) s (bS]

> pe is the electron number density of the material and [/ is the mean excitation potential

» Experimental values of the mean excitation potential for a single-element substance (e.g.
O, gas) can be looked up in a database
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Inhomogeneous MLP formalism
Calculation of scattering moments

» RStP exhibits negligible energy dependence in the range of 3 to 300 MeV for the materials
investigated
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Inhomogeneous MLP formalism
Calculation of scattering moments

» RStP exhibits negligible energy dependence in the range of 3 to 300 MeV for the materials
investigated

» We can now calculate the stopping power at any depth u using

S(u) = Sy(u)S. (21)
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Inhomogeneous MLP formalism
Calculation of scattering moments

» RStP exhibits negligible energy dependence in the range of 3 to 300 MeV for the materials
investigated

» We can now calculate the stopping power at any depth u using
S(u) = Sw(u)S. (21)

» In the proposed use of this method, the current estimate of RSP from the reconstructed
image will be used to update RSP in each voxel.
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Inhomogeneous MLP formalism
MLP-spline-hybrid method
» Wish to increase computational efficiency
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Inhomogeneous MLP formalism
MLP-spline-hybrid method

» Wish to increase computational efficiency

» Inhomogeneous MLP (denoted MLPx) may be calculated only at material boundaries in a
heterogeneous phantom
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Inhomogeneous MLP formalism
MLP-spline-hybrid method

» Wish to increase computational efficiency

» Inhomogeneous MLP (denoted MLPx) may be calculated only at material boundaries in a
heterogeneous phantom

» Entire trajectory is then estimated by fitting a cubic spline through the boundary data,
given the initial and final directions of the proton
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Inhomogeneous MLP formalism
MLP-spline-hybrid method

v

Wish to increase computational efficiency

v

Inhomogeneous MLP (denoted MLPy) may be calculated only at material boundaries in a
heterogeneous phantom

v

Entire trajectory is then estimated by fitting a cubic spline through the boundary data,
given the initial and final directions of the proton

v

Denote this spline-hybrid approach MLPSH
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Catalogue of anatomical materials

ID  Material T 5 og (x10~2)  ID  Material T 3 og (x1072)
1 Adipose Child #1 0.89504  0.98819 0.080 25  Ovary 1.03668  1.04422 0.009
2 Adipose Child #2 0.85245  0.96906 0.108 26 Pancreas 1.00525  1.03704 0.014
3 Adipose Child #3 0.81864  0.96224 0.131 27  Skin Adult 1.04607  1.07811 0.003
4 Adipose Adult #1 0.84351  0.97922 0.119 28  Spleen Adult 1.04356  1.05000 0.012
5  Adipose Adult #2 0.80580  0.96295 0.140 29 Testis 1.02414  1.03567 0.003
6  Adipose Adult #3 0.76853  0.94665 0.162 30  Thyroid 1.03159  1.04147 0.006
7 Lipoma 0.80313  0.99125 0.158 31  Urinary Bladder (Empty) 1.02807  1.08220 0.010
8  Blood Adult 1.04510  1.04967 0.016 82  Water 1 1 0
9 Brain Adult 1.01573  1.03654 0.008 33  Skeleton Yellow Marrow 0.81917  0.99433 0.159

10 Breast Mammary Gland #1 0.86546 0.99639 0.108 34 Skeleton Red Marrow 0.9: 1.02952 0.072

11 Breast Mammary Gland #2 0.93908  1.01948 0.058 35  Skeleton Cartilage Adult 1. 1.07817 0.073

12 Breast Mammary Gland #3 1.02495  1.05108 0.002 36  Skeleton Cortical Bone Adult 2.72651  1.69534 1.114

13 Breast Whole (50/50) 0.86365 0.97171 0.099 37 Skeleton Cranium 2.10373 1.46368 0.703

14 Breast Whole (33/67) 0.81350  0.95312 0.130 38  Skeleton Femur Adult (30 yrs) 1.55809  1.25184 0.344

15 Eye Lens 1.02782 1.05615 0.010 39 Skeleton Femur Adult (90 yrs) 1.35430 1.16568 0.219

16 GI Tract 1.00727  1.02423 0.004 40  Skeleton Humerus 1.79596  1.35001 0.496

17 Heart Adult (Healthy) 1.02557  1.04185 0.001 41  Skeleton Mandible 2.23854  1.51680 0.790

18 Heart Adult (Fatty) 1.00500 1.03341 0.006 42 Skeleton Ribs (2nd, 6th) 1.69826 1.31384 0.433

19 Kidney Adult 1.02861  1.04136 0.007 43  Skeleton Ribs (10th) 1.91000  1.39837 0.579

20 Liver Adult (Healthy) 1.03899 1.05002 0.011 44 Skeleton Sacrum Male 1.45649 1.22427 0.275

21 Liver Adult (Fatty) 1.01532  1.04229 0.005 45  Skeleton Spongiosa 1.24427  1.13916 0.136

22 Lung Adult (Healthy) 0.25650  0.25781 0.004 46  Skeleton Vertebral Column C4 171726 1.32177 0.447

23 Lymph 1.02702 1.02319 0.010 47 Air 0.00121 0.00108 < 0.001

24 Muscle Skeletal Adult 1.02672  1.04130 0.008
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> RScP (T) and RStP (5) values have bee calculated for human tissues listed in ICRU
Report 46 [White et al., 1992] (and air)
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Catalogue of anatomical materials

> RScP (T) and RStP (5) values have bee calculated for human tissues listed in ICRU
Report 46 [White et al., 1992] (and air)

» Each material is given an identification (ID) number

LLU-Aug-2018 Inhomog. MLP formalism for pCT mark.brooke@oncology.ox.ac.uk ©@markdanbrooke

60



OXFORD
CENTRE

751

NIVERSITY OF %5 CANCER
b RESEARCH
by UK

CRUK/MRC Oxford Institute for Radiation Oncology

Catalogue of anatomical materials

> RScP (T) and RStP (5) values have bee calculated for human tissues listed in ICRU
Report 46 [White et al., 1992] (and air)

» Each material is given an identification (ID) number

» Any mean excitation values (/) used in the calculation of stopping power were obtained
from ICRU Report 49 [Berger et al., 1993]
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Relation between RStP and RScP
3 T . r
Linear fit (solid tissues) o
o5 — — —Linear fit (low density materials)
» In a pCT reconstruction algorithm, RStP o
in each voxel may be updated on %
successive iterations to build an image of = 2T |
the body £
G 15 F ]
T
@
o 1} 1
=
© =
€05+ e ]
0= : : :
0 0.5 1 15 2

Relative Stopping Power
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Relation between RStP and RScP

» In a pCT reconstruction algorithm, RStP
in each voxel may be updated on
successive iterations to build an image of
the body

» Implementation of a calibration curve that
determines RScP from RStP could provide
an improvement to convergence of the
algorithm and the final accuracy of the
image

Relative Scattering Power

25
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CENTRE

XFORD

Lin
— ——Lin

ear fit (solid tissues)
ear fit (low density materials)

0.5 1 15
Relative Stopping Power
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Metric for comparing MLP estimates

» We propose a metric G that assigns a single value to an MLP estimate, allowing for
simple comparisons between different formalisms, geometries and beam characteristics.

1 o
G:,szzg"j (22)

i=1 j=1
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Metric for comparing MLP estimates

» We propose a metric G that assigns a single value to an MLP estimate, allowing for
simple comparisons between different formalisms, geometries and beam characteristics.

1
-1 %y @)
Pli=1 j=1

> np is the number of proton tracks used in the MLP calculation, N is the number of
discrete depths at which a proton's lateral deviation t is recorded and

2
g — L) = ti(1)]
’ CHO))

(23)
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Metric for comparing MLP estimates

» We propose a metric G that assigns a single value to an MLP estimate, allowing for
simple comparisons between different formalisms, geometries and beam characteristics.

1
-1 %y @)
Pli=1 j=1

> np is the number of proton tracks used in the MLP calculation, N is the number of
discrete depths at which a proton's lateral deviation t is recorded and

2
g — L) = ti(1)]
’ CHO))

(23)

» 6¢(u;) is the standard deviation in the estimate of the lateral deflection at depth u;, given
by the square root of the (1,1) matrix element in (11).
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G value  Accuracy of MLP

G =0 perfect
0<G<1 good

G >1 unsatisfactory

G>1 poor

John Monash
Foundation
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Monte Carlo simulations
Setup

» An inhomogeneous geometry was created in TOPAS [Perl et al., 2012] consisting of water
and thick slabs of cranium and cortical bone
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Monte Carlo simulations
Setup

» An inhomogeneous geometry was created in TOPAS [Perl et al., 2012] consisting of water
and thick slabs of cranium and cortical bone

» Proton histories were collected at 5 mm depth increments
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Monte Carlo simulations
Setup
»
- 5 3 5 v
) E‘ Bl E' o
i) = o = Py
[ o B @
= 3] 8 3] =
2cm| 7cm 2cm| Tcm 2cm

» Nominal beam energies of 230, 225, 220, 215 and 210 MeV were tested
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Monte Carlo simulations
Results
0

; M = 230
\ =

5 225
= o
g 10 s

8 & 220
5 15 E

2 3 215
q‘: *EO:ZWOMeV f
>~ —E, = 5 ©

~ 20 & e 210
o $

25 -
0 50 100 150 200 0 5 10 15
Depth in phantom (mm) Max % error reduction

» Inhomogeneous formalism offers greatest accuracy improvement at lower energies, where
scattering is more pronounced
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Monte Carlo simulations
Results: 210 MeV protons

12 | Water | Cranium [ Cortical [ Cranium | Water |
—o—MLP

. H20 . . .
£ | MLP, » Accounting for -|nhomogene|ty.(|\/|LPX)
£ MLP_SH leads to approximately a 17% improvement
= v . . —
g gl in maximum RMS lateral position error
g when compared to the assumption of a
2‘06 water phantom (MLPyso) for a 210 MeV
i nominal beam energy
F04f
<
So2}
(]
w0
=
© 9 I I L v

0 50 100 150 200

Depth in phantom (mm)
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Monte Carlo simulations
Results: 210 MeV protons

12 | Water | Cranium [ Cortical | Cranium [ Water |
g . :mti:ﬁo » Accounting for -inhomogeneity.(l\/ILPx)
= —o_MLP_SH leads to approximately a 17% improvement
é 08 | - in maximum RMS lateral position error
g when compared to the assumption of a
f%%oﬁ I Wate_r phantom (MLPyy0) for a 210 MeV
T nominal beam energy
goal
E » Spline-Hybrid approach (MLPxSH)
g 02t achieved very similar results in
2 1/40th the time
T o L L L

50 100 150 200
Depth in phantom (mm)

o
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Monte Carlo simulations
Results: 210 MeV protons

40
MC -~
;t:HZO I ////// . \\\\
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g 4 - 7'
MLP SH v 7
€ 36 | |— — —MLP,SH envelope ¢ 7 // 71
£ P 7z Ya2a
c
S > Shape of probability envelope (skewness,
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g width) depends on material
©
S 32
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4
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Monte Carlo simulations

Setup
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> More realistic geometry tested with a monoenergetic 190 MeV proton beam
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Monte Carlo simulations
Results
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H20 . N .

06 |- & -MLP_ » No appreciable improvement in accuracy

—~—MLP _SH by employing inhomogeneous formalism
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Monte Carlo simulations
Results

RMS error in lateral displacement (mm)
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» No appreciable improvement in accuracy
by employing inhomogeneous formalism

» Probability envelope is wider using the
inhomogeneous formalism
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Monte Carlo simulations

Results
07 ¢
——MLP,,

06 |-« -MLP_ » No appreciable improvement in accuracy
£ —~—MLP _SH by employing inhomogeneous formalism
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g » Probability envelope is wider using the
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Monte Carlo simulations
Results

RMS error in lateral displacement (mm)
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No appreciable improvement in accuracy
by employing inhomogeneous formalism

» Probability envelope is wider using the

inhomogeneous formalism

» No appreciable improvement in accuracy

by employing inhomogeneous formalism

» Probability envelope is wider using the

inhomogeneous formalism
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Results
MLP MLP MLPxSH
Summary 20 ¥ X
% tracks % tracks % tracks
Metric outside Metric outside Metric outside
value G 30 MLP value G 30 MLP value G 30 MLP
envelope envelope envelope
No data cuts 1.65 7.57 1.42 7.27 1.48 6.57
Water
Phantom |30 cuts 0.633 3.07 0.585 2.50 0.581 1.93
(200 MeV)
20 cuts 0.564 2.04 0.520 1.57 0.514 1.07
20 cuts
(210 Mev) 3.75 49.7 0.522 1.23 0.496 1.10
20 cuts
(215 Mev) 1.95 24.2 0.526 1.33 0.524 1.17
Slab 20 cuts
Phantom A | (220 Mev) 1.52 15.8 0.516 1.27 0.515 1.17
20 cuts
(225 Mev) 1.33 11.1 0.523 1.50 0.520 1.23
20 cuts
(230 Mev) 1.26 9.83 0.519 1.37 0.516 1.03
Slab
Phantom B |20 cuts 0.608 1.80 0.504 1.35 0.490 1.20
(190 MeV)
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Conclusions

> A catalogue of materials has been created based on RStP and RScP values
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Conclusions

> A catalogue of materials has been created based on RStP and RScP values

» Bi-linear relationship shown between RStP an RScP which could be utilised in iterative
pCT reconstruction
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Conclusions

> A catalogue of materials has been created based on RStP and RScP values

» Bi-linear relationship shown between RStP an RScP which could be utilised in iterative
pCT reconstruction

» Inhomogeneous formalism shows noticeable improvement in MLP accuracy for thick and
dense materials, and at lower energies
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Conclusions
> A catalogue of materials has been created based on RStP and RScP values

v

Bi-linear relationship shown between RStP an RScP which could be utilised in iterative
pCT reconstruction

v

Inhomogeneous formalism shows noticeable improvement in MLP accuracy for thick and
dense materials, and at lower energies

v

Spline-Hybrid approach produces very similar results in a small fraction of the time
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Conclusions
> A catalogue of materials has been created based on RStP and RScP values

v

Bi-linear relationship shown between RStP an RScP which could be utilised in iterative
pCT reconstruction

v

Inhomogeneous formalism shows noticeable improvement in MLP accuracy for thick and
dense materials, and at lower energies

v

Spline-Hybrid approach produces very similar results in a small fraction of the time

v

Probability envelope shape (skewness, width) depends on material
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An inhomogeneous most likely path formalism for proton computed tomography
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Multiple Coulomb scattering (MCS) poses a challenge in proton CT (pCT) image reconstruction. The assumption of straight line paths is replaced with Bayesian models of the most likely path
(MLP). Current MLP-based pCT reconstruction approaches assume a water scattering environment. In this work, an MLP formalism that takes into account the inhomogeneous composition of
the human body has been proposed, which is based on the accurate determination of scattering moments in heterogeneous media. Monte Carlo simulation was used to compare the new
inhomgeneous MLP formalism to the homogeneous water approach. An MLP-Spline-Hybrid method was investigated for improved computational efficiency and a metric was introduced for
assessing the accuracy of the MLP estimate. Anatomical materials have been catalogued based on their relative stopping power (RStP) and relative scattering power (RScP) and a
relationship between these two values was investigated. A bi-linear correlation between RStP and RSP is shown. When compared to Monte Carlo proton tracks through a 20 cm water cube
with thick bone inserts using the TOPAS simulation toolkit, the inhomogeneous formalism was shown to predict proton paths to within 1.0 mm on average for beams ranging from 230 MeV'
down to 210 MeV incident energy. The improvement in accuracy over the conventional MLP approach from using the new formalism is most noticeable at lower energies, ranging from 5% for
2230 MeV beam to 17% for 210 MeV. Implementation of a new MLP-Spline-Hybrid method greatly reduced computation time while suffering negligible loss of accuracy. A more clinically
relevant phantom was created by inserting thin slabs of bone and an air cavity into the water phantom. There was no noticeable gain in the accuracy of predicting 190 MeV Monte Carlo proton
paths using the inhomogeneous formalism in this case.
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