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Introduction to proton CT imaging
Stopping power and water equivalent path length

Definition
Stopping power: energy loss of the proton per unit length (MeV/cm);

S(E ) ≡ −dE

dl
. (1)

Definition
Water equivalent path length (WEPL): total length of path travelled by a proton in water;

WEPL ≡
∫ Ein

Eout

1
S(E )

dE . (2)
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Introduction to proton CT imaging
Overview

I Seek to solve a system of linear equations A~x = ~b

I aij is the path length of the i-th proton through the j-th voxel

I bi is the WEPL of the i-th proton

I xj is the relative stopping power (RStP) in the j-th voxel

Definition
Relative stopping power (RStP): the ratio of the stopping power in the material of interest to
that in water at the same energy;

RStP ≡ Ŝ(E ) =
S(E )

Sw(E )
. (3)
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Introduction to proton CT imaging
Why use protons?

I In clinical practice RStP is estimated by conversion of X-ray CT Hounsfield via an
empirically derived calibration curve

I This approach can lead to errors in stopping power of up to 3% [Smith, 2009; Jiang et al.,
2007]

I pCT is an alternative approach in which RStP of the patient is measured directly with an
energetic proton beam

I In iterative pCT reconstruction, one may first assume the imaged object is made purely of
water

I On each successive iteration the internal composition may be updated
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Most likely path of protons
Importance

I Protons do not move in straight lines

I Multiple Coulomb scattering (MCS) poses a challenge in pCT image reconstruction

I Assumption of straight line paths is replaced with Bayesian models of the most likely path
(MLP) [Williams, 2004; Schulte et al., 2008]

I MLP is currently calculated under the assumption that the imaged body consists entirely
of water

I We present an MLP formalism that takes into account the inhomogeneous composition of
the human body
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Most likely path of protons
Bayesian formalism

I Matrix-based MLP formula [Schulte et al., 2008]

I Uses Bayesian probability theory

I Uses entry and exit information to infer most likely trajectory through water

I the most likely lateral position t1 and angular deflection θ1 at an intermediate depth u1

are represented by the vector y1 =
(
t1 θ1

)T
, given the respective entry and exit

conditions, yin = y0 =
(
t0 θ0

)T and yout = y2 =
(
t2 θ2

)T
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Most likely path of protons
Bayesian formalism

I The MLP is calculated by Equation (24) in [Schulte et al., 2008];

yMLP =
(

Σ−1
1 + RT

1 Σ−1
2 R1

)−1 (
Σ−1

1 R0y0 + RT
1 Σ−1

2 y2

)
(4)

I R0 and R1 are change-of-basis matrices,

R0 =

(
1 u1 − u0
0 1

)
, R1 =

(
1 u2 − u1
0 1

)
(5)

I Σ1 and Σ2 are the covariance matrices,

Σ1 =

(
σ2
t1 σ2

t1θ1

σ2
t1θ1

σ2
θ1

)
, Σ2 =

(
σ2
t2 σ2

t2θ2

σ2
t2θ2

σ2
θ2

)
(6)
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Most likely path of protons
Bayesian formalism

Definition
Scattering power: the rate of increase, with depth u, of the mean square of the projected scattering
angle θ;

T (u) ≡ d〈θ2〉
du

. (7)

I Elements of the covariance matrices in (6), known as scattering moments, given by (for i = 1, 2)

σ2
θi ≡ A0(ui ) =

∫ ui

ui−1

T (η)dη, (8)

σ2
tiθi ≡ A1(ui ) =

∫ ui

ui−1

(ui − η)T (η)dη, (9)

σ2
ti ≡ A2(ui ) =

∫ ui

ui−1

(ui − η)2T (η)dη, (10)
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Most likely path of protons
Bayesian formalism

I The variance in lateral displacement is given by the (1,1) matrix element of (11) [Schulte
et al., 2008];

εt1θ1 = 2
(
Σ−1

1 + RT
1 Σ−1

2 R1
)−1

. (11)

I This error matrix may be used to define a probability envelope surrounding the most likely
path.
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Inhomogeneous MLP formalism
Calculation of scattering moments

I Gottschalk’s method [Gottschalk, 2010] has been used to approximate the scattering
power T (u) at depth u as

T (u) =
2π
α

(
mec

2)2(τ + 1
τ + 2

)2 1
E 2(u)

1
Xs

(12)

I E (u) is the depth-dependent kinetic energy of the proton
I τ = E (u)/mpc

2 is the reduced kinetic energy of the proton
I Gottschalk introduced the scattering length 1/Xs , given by

1
Xs

≡ αNAρ

(
e2

mec2

)2
Z

A

{
2 ln

[
33219(AZ )−1/3

]
− 1
}

(13)

where ρ is the mass density.
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Inhomogeneous MLP formalism
Calculation of scattering moments

I If the composite material consists of n elements, each with fractional weight per volume
0 < wk ≤ 1, k = 1, . . . , n then

1
Xs

= ρ

n∑
k=1

wk

(
1
ρXs

)
k

(14)

where ρ is the density of the composite material.

Definition
Relative scattering power (RScP): the ratio of the scattering power in the material of interest
to that in water;

RScP ≡ T̂ =
T

Tw
. (15)
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Inhomogeneous MLP formalism
Calculation of scattering moments

I RScP is simply the ratio of scattering lengths and is thus energy independent.

I It can be shown that

T̂ =
ρ

ρw

ZAw

ZwA

[
19.8218− 2

3 ln(ZA)

19.8218− 2
3 ln(ZwAw)

]
(16)

where the subscript ’w’ refers to the value for water.

I We can now calculate the scattering power at any depth u using

T (u) = Tw(u)T̂ . (17)
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Inhomogeneous MLP formalism
Calculation of scattering moments

I Tw(u) requires the kinetic energy of the proton to be known at depth u

I Use definition of stopping power and RStP to estimate the kinetic energy

I Forward Euler method:

EF
j = EF

j−1 − ŜjSw(EF
j )δu, j = 1, . . . ,N, (18)

I Backward Euler method:

EB
j = EB

j+1 + ŜjSw(EB
j+1)δu, j = 0, . . . ,N − 1 (19)

I Ŝj is the RStP at discrete depth uj
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I Forward Euler method:

EF
j = EF

j−1 − ŜjSw(EF
j )δu, j = 1, . . . ,N, (18)

I Backward Euler method:

EB
j = EB

j+1 + ŜjSw(EB
j+1)δu, j = 0, . . . ,N − 1 (19)

I Ŝj is the RStP at discrete depth uj
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j+1 + ŜjSw(EB
j+1)δu, j = 0, . . . ,N − 1 (19)
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Inhomogeneous MLP formalism
Calculation of scattering moments

I Stopping powers in water can be determined using the Bethe-Bloch formula,

S(E ) ≡ −
〈
dE

du

〉
=

4π
mec2

ρe
β2

(
e2

4πε0

)2 [
ln

(
2mec

2β2

I (1− β2)

)
− β2

]
(20)

I ρe is the electron number density of the material and I is the mean excitation potential

I Experimental values of the mean excitation potential for a single-element substance (e.g.
O2 gas) can be looked up in a database
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Inhomogeneous MLP formalism
Calculation of scattering moments

I RStP exhibits negligible energy dependence in the range of 3 to 300 MeV for the materials
investigated

I We can now calculate the stopping power at any depth u using

S(u) = Sw(u)Ŝ . (21)

I In the proposed use of this method, the current estimate of RSP from the reconstructed
image will be used to update RSP in each voxel.
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Inhomogeneous MLP formalism
MLP-spline-hybrid method

I Wish to increase computational efficiency

I Inhomogeneous MLP (denoted MLPx) may be calculated only at material boundaries in a
heterogeneous phantom

I Entire trajectory is then estimated by fitting a cubic spline through the boundary data,
given the initial and final directions of the proton

I Denote this spline-hybrid approach MLPxSH
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Catalogue of anatomical materials
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Catalogue of anatomical materials

I RScP (T̂ ) and RStP (Ŝ) values have bee calculated for human tissues listed in ICRU
Report 46 [White et al., 1992] (and air)

I Each material is given an identification (ID) number

I Any mean excitation values (I ) used in the calculation of stopping power were obtained
from ICRU Report 49 [Berger et al., 1993]
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Relation between RStP and RScP

I In a pCT reconstruction algorithm, RStP
in each voxel may be updated on
successive iterations to build an image of
the body

I Implementation of a calibration curve that
determines RScP from RStP could provide
an improvement to convergence of the
algorithm and the final accuracy of the
image
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Metric for comparing MLP estimates

I We propose a metric G that assigns a single value to an MLP estimate, allowing for
simple comparisons between different formalisms, geometries and beam characteristics.

G =
1
np

np∑
i=1

N∑
j=1

gij (22)

I np is the number of proton tracks used in the MLP calculation, N is the number of
discrete depths at which a proton’s lateral deviation t is recorded and

gij =

∣∣ti,mlp(uj) − ti (uj)
∣∣2

σ̂2
t (uj)

. (23)

I σ̂t(uj) is the standard deviation in the estimate of the lateral deflection at depth uj , given
by the square root of the (1,1) matrix element in (11).
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Metric for comparing MLP estimates

G value Accuracy of MLP

G = 0 perfect

0 < G ≤ 1 good

G > 1 unsatisfactory

G � 1 poor
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Monte Carlo simulations
Setup

I An inhomogeneous geometry was created in TOPAS [Perl et al., 2012] consisting of water
and thick slabs of cranium and cortical bone

I Proton histories were collected at 5 mm depth increments
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Monte Carlo simulations
Setup

I Nominal beam energies of 230, 225, 220, 215 and 210 MeV were tested
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Monte Carlo simulations
Results

I Inhomogeneous formalism offers greatest accuracy improvement at lower energies, where
scattering is more pronounced
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Monte Carlo simulations
Results: 210 MeV protons

I Accounting for inhomogeneity (MLPX)
leads to approximately a 17% improvement
in maximum RMS lateral position error
when compared to the assumption of a
water phantom (MLPH2O) for a 210 MeV
nominal beam energy

I Spline-Hybrid approach (MLPXSH)
achieved very similar results in
1/40th the time
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Monte Carlo simulations
Results: 210 MeV protons

I Shape of probability envelope (skewness,
width) depends on material
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Monte Carlo simulations
Setup

I More realistic geometry tested with a monoenergetic 190 MeV proton beam
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Monte Carlo simulations
Results

I No appreciable improvement in accuracy
by employing inhomogeneous formalism

I Probability envelope is wider using the
inhomogeneous formalism

I No appreciable improvement in accuracy
by employing inhomogeneous formalism

I Probability envelope is wider using the
inhomogeneous formalism
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Results
Summary
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Conclusions

I A catalogue of materials has been created based on RStP and RScP values

I Bi-linear relationship shown between RStP an RScP which could be utilised in iterative
pCT reconstruction

I Inhomogeneous formalism shows noticeable improvement in MLP accuracy for thick and
dense materials, and at lower energies

I Spline-Hybrid approach produces very similar results in a small fraction of the time

I Probability envelope shape (skewness, width) depends on material
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