

Incorporating biological factors in radiation therapy treatment planning

Mark Brooke DPhil Student

¹CRUK/MRC Oxford Instistute for Radiation Oncology University of Oxford

Supervisors:

Prof. Frank van den Heuvel Prof. Maria Hawkins Dr. Francesca Fiorini

Presented at Loma Linda University August 08 2018

 PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann, 2015]

- PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann, 2015]
- ► Main therapeutic advantage: *Bragg peak* in energy deposition

- PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann, 2015]
- ► Main therapeutic advantage: *Bragg peak* in energy deposition
- Most of the energy is deposited toward the end of its trajectory in a sharp peak

- PTCOG: as of end of 2014 over 137,000 cancer patients had been treated with particle therapy worldwide, with protons being the chosen modality in 86% of cases [Jermann, 2015]
- ► Main therapeutic advantage: *Bragg peak* in energy deposition
- Most of the energy is deposited toward the end of its trajectory in a sharp peak
- Advantageous in IMPT as the energy and intensity of individual pencil beams can be manipulated to deposit a highly conformable dose to the tumour volume, with a low dose on entry and no exit dose

However the physical concept of dose – energy per unit mass – <u>does not</u> on its own adequately describe tumour control and normal tissue complications in particle therapy

- However the physical concept of dose energy per unit mass <u>does not</u> on its own adequately describe tumour control and normal tissue complications in particle therapy
- Densely ionising particle tracks offer an increased cell-killing efficiency over sparsely ionising x-rays

- However the physical concept of dose energy per unit mass <u>does not</u> on its own adequately describe tumour control and normal tissue complications in particle therapy
- Densely ionising particle tracks offer an increased cell-killing efficiency over sparsely ionising x-rays
- May be quantified through various biological endpoints

- However the physical concept of dose energy per unit mass <u>does not</u> on its own adequately describe tumour control and normal tissue complications in particle therapy
- Densely ionising particle tracks offer an increased cell-killing efficiency over sparsely ionising x-rays
- May be quantified through various biological endpoints
- Quantification of radiobiological effects can be incorporated into treatment plan optimization algorithms

- However the physical concept of dose energy per unit mass <u>does not</u> on its own adequately describe tumour control and normal tissue complications in particle therapy
- Densely ionising particle tracks offer an increased cell-killing efficiency over sparsely ionising x-rays
- May be quantified through various biological endpoints
- Quantification of radiobiological effects can be incorporated into treatment plan optimization algorithms
- Seek a dose distribution that is both physically and biologically favourable

Definition

Relative Biological Effectiveness (RBE): the dose delivered using a specific modality and energy that yields the same biological effect as a reference dose in a reference modality;

$$RBE_{} = \frac{Dose \text{ of reference radiation}}{Dose \text{ of test radiation}}.$$
 (1)

Definition

Relative Biological Effectiveness (RBE): the dose delivered using a specific modality and energy that yields the same biological effect as a reference dose in a reference modality;

$$RBE_{\langle endpoint \rangle} = \frac{Dose \text{ of reference radiation}}{Dose \text{ of test radiation}}.$$
 (1)

Commonly used endpoint is the number of surviving cells in a culture by clonogenic survival assay following irradiation

Definition

Relative Biological Effectiveness (RBE): the dose delivered using a specific modality and energy that yields the same biological effect as a reference dose in a reference modality;

$$RBE_{\langle endpoint \rangle} = \frac{Dose \text{ of reference radiation}}{Dose \text{ of test radiation}}.$$
 (1)

Commonly used endpoint is the number of surviving cells in a culture by clonogenic survival assay following irradiation

▶ In-vivo prediction of the RBE, however, is required for radiation therapy

Definition

Relative Biological Effectiveness (RBE): the dose delivered using a specific modality and energy that yields the same biological effect as a reference dose in a reference modality;

$$RBE_{} = \frac{Dose \text{ of reference radiation}}{Dose \text{ of test radiation}}.$$
 (1)

Commonly used endpoint is the number of surviving cells in a culture by clonogenic survival assay following irradiation

- In-vivo prediction of the RBE, however, is required for radiation therapy
- In-vitro cell data on its own is unsatisfactory

 Major mechanism for cell kill is believed to be the induction of double strand breaks (DSBs) in nuclear DNA [Caldecott, 2008; Ward, 1985]

- Major mechanism for cell kill is believed to be the induction of double strand breaks (DSBs) in nuclear DNA [Caldecott, 2008; Ward, 1985]
- ▶ we choose to define a <u>restricted RBE</u> for complex damage based on DSB induction

- Major mechanism for cell kill is believed to be the induction of double strand breaks (DSBs) in nuclear DNA [Caldecott, 2008; Ward, 1985]
- ▶ we choose to define a <u>restricted RBE</u> for complex damage based on DSB induction

- Major mechanism for cell kill is believed to be the induction of double strand breaks (DSBs) in nuclear DNA [Caldecott, 2008; Ward, 1985]
- ▶ we choose to define a <u>restricted RBE</u> for complex damage based on DSB induction

Definition

Restricted RBE for complex damage: ratio of the number of DSBs in the modality of interest to the number generated in a reference modality depositing the same dose;

$$RBE_{cd} = \left(\frac{\#DSB \text{ induced by test radiation}}{\#DSB \text{ induced by test radiation}}\right)_{same \text{ dose}}.$$

(2)

Modeling DNA damage Linear energy transfer (LET)

 Differential loss of kinetic energy over distance given by stopping power (dE/dl)

Figure: Image cropped from Fig 1 in [Lomax et al., 2013].

Modeling DNA damage Linear energy transfer (LET)

- Differential loss of kinetic energy over distance given by stopping power (dE/dl)
- Microdosimetry: linear energy transfer (LET) is used instead – which is stopping power but with energy delivered to highly energetic knock-on electrons subtracted

Figure: Image cropped from Fig 1 in [Lomax et al., 2013].

Modeling DNA damage Linear energy transfer (LET)

- Differential loss of kinetic energy over distance given by stopping power (dE/dl)
- Microdosimetry: linear energy transfer (LET) is used instead – which is stopping power but with energy delivered to highly energetic knock-on electrons subtracted
- Density of ionisations along track can therefore be measured using LET and is closely related to the kinetic energy of the particle

CANCER

RESEARCH

OXFORD

Figure: Image cropped from Fig 1 in [Lomax et al., 2013].

INIVERSITY OF

💟 @markdanbrooke 🛛 21

John Monash

Modeling DNA damage Single particle interaction model

Approximate a section of the DNA as a cylinder

Modeling DNA damage Single particle interaction model

- Approximate a section of the DNA as a cylinder
- ► Use the energy dependent mean free path λ(E) between successive ionisations to determine the distribution of clustered lesions [Van den Heuvel, 2014]

mark.brooke@oncology.ox.ac.uk

Modeling DNA damage Single particle interaction model

- Approximate a section of the DNA as a cylinder
- ► Use the energy dependent mean free path λ(E) between successive ionisations to determine the distribution of clustered lesions [Van den Heuvel, 2014]
- ► Angular dependence: larger θ ⇒ longer path through DNA ⇒ higher LET and greater likelihood of inducing clustered damage

Modeling DNA damage Single particle interaction model

Problem is equivalent to setting an isotropic point source at the boundary of the cylinder

Modeling DNA damage Single particle interaction model

- Problem is equivalent to setting an isotropic point source at the boundary of the cylinder
- Reduces mathematically to that of the distribution of projections of a point source on a line-piece

Modeling DNA damage Single particle interaction model

- Problem is equivalent to setting an isotropic point source at the boundary of the cylinder
- Reduces mathematically to that of the distribution of projections of a point source on a line-piece
- Solution: Cauchy distribution

Modeling DNA damage Single particle interaction model

 Using λ(E), the distribution of DSBs may be reformulated as a function of E instead of θ

Modeling DNA damage Single particle interaction model

- Using λ(E), the distribution of DSBs may be reformulated as a function of E instead of θ
- Damage response function: expected yield of DSBs given by [Van den Heuvel, 2014]

$$F_{\rm cd}(E) = (a-b)\frac{2}{\pi} \left[\tan^{-1} \left(\frac{E-E_0}{\Gamma/2} \right) \right] + b \quad (3)$$

- Using λ(E), the distribution of DSBs may be reformulated as a function of E instead of θ
- Damage response function: expected yield of DSBs given by [Van den Heuvel, 2014]

$$F_{\rm cd}(E) = (a-b)\frac{2}{\pi} \left[\tan^{-1} \left(\frac{E-E_0}{\Gamma/2} \right) \right] + b \quad (3)$$

► Units: Gbp⁻¹Gy⁻¹

Modeling DNA damage Single particle interaction model

▶ Parameters *a*, *b*, Γ , and *E*₀ fitted through a two-stage χ^2 minimisation

CANCER

OXFORD

UNIVERSITY OF

OXFORI

John Monash Foundation

Modeling DNA damage Single particle interaction model

- ▶ Parameters *a*, *b*, Γ , and *E*₀ fitted through a two-stage χ^2 minimisation
- ▶ 1. Differential Lorentz distribution dF_{cd}/dE

Modeling DNA damage Single particle interaction model

- ▶ Parameters *a*, *b*, Γ , and *E*₀ fitted through a two-stage χ^2 minimisation
- ▶ 1. Differential Lorentz distribution dF_{cd}/dE
- > 2. Cumulative Cauchy distribution F_{cd}

Modeling DNA damage Single particle interaction model

- \blacktriangleright Parameters $a,~b,~\Gamma,~{\rm and}~E_0$ fitted through a two-stage χ^2 minimisation
- ▶ 1. Differential Lorentz distribution dF_{cd}/dE
- > 2. Cumulative Cauchy distribution F_{cd}
- Good agreement with microscopic Monte Carlo software MCDS [Semenenko and Stewart, 2004]

💟 @markdanbrooke 🛛 34

Monte Carlo

Dose deposited in each voxel D[i, j.k] of the patient CT

CANCER

OXFORD CENTRE

Figure: Image from Figure 6(b) in [Van den Heuvel, 2014].

UNIVERSITY OF

XEORE

John Monash Foundation

- Dose deposited in each voxel D[i, j.k] of the patient CT
- Energy spectrum Ψ_{ijk}(E) in a voxel (by Monte Carlo or analytic models)

Figure: Image from Figure 6(b) in [Van den Heuvel, 2014].

UNIVERSITY OF

- Dose deposited in each voxel D[i, j.k] of the patient CT
- Energy spectrum Ψ_{ijk}(E) in a voxel (by Monte Carlo or analytic models)
- Yield of complex damage M_{cd}[i, j, k] can be calculated using the response function

$$\mathsf{M}_{\mathsf{cd}}[i,j,k] = \mathsf{D}[i,j,k] \times \frac{\int_{\mathbf{0}}^{E_{\max}[i,j,k]} \Psi_{ijk}(\mathcal{E}) \mathcal{F}_{cd}(\mathcal{E}) d\mathcal{E}}{\int_{\mathbf{0}}^{E_{\max}[i,j,k]} \Psi_{ijk}(\mathcal{E}) d\mathcal{E}}$$
(4)

Figure: Image from Figure 6(b) in [Van den Heuvel, 2014].

💟 @markdanbrooke 37

- Dose deposited in each voxel D[i, j.k] of the patient CT
- Energy spectrum Ψ_{ijk}(E) in a voxel (by Monte Carlo or analytic models)
- Yield of complex damage M_{cd}[i, j, k] can be calculated using the response function

$$\mathsf{M}_{\mathsf{cd}}[i,j,k] = \mathsf{D}[i,j,k] \times \frac{\int_{\mathbf{0}}^{E_{\max}[i,j,k]} \Psi_{ijk}(E) \mathcal{F}_{cd}(E) dE}{\int_{\mathbf{0}}^{E_{\max}[i,j,k]} \Psi_{ijk}(E) dE}$$
(4)

CANCER

RESEARCH

OXFORD

CENTRE

 $RBE_{cd} = M_{cd,p}/M_{cd,\gamma}$ (5)

Figure: Image from Figure 6(b) in [Van den Heuvel, 2014].

INIVERSITY OF

John Monash

Further considerations Oxygen level modeling

 Amount of oxygen binding that can occur has a saturation behaviour

LLU-Aug-2018 Incorporating bio. factors in RT treatment planning

mark.brooke@oncology.ox.ac.uk

CRUK/MRC Oxford Institute for Radiation Oncology

Further considerations Oxygen level modeling

- Amount of oxygen binding that can occur has a saturation behaviour
- Can be modeled using second order D.E. [Kepner, 2010; Van den Heuvel, 2014]

$$\frac{(d^2y/dx^2)dx}{(dy/dx)} = N\left(\frac{dy}{y}\right) - M\left(\frac{dx}{x}\right) \qquad (6)$$

🖸 @markdanbrooke

40

 Amount of oxygen binding that can occur has a saturation behaviour

CRUK/MRC Oxford Institute for Radiation Oncology

 Can be modeled using second order D.E. [Kepner, 2010; Van den Heuvel, 2014]

Further considerations

$$\frac{(d^2y/dx^2)dx}{(dy/dx)} = N\left(\frac{dy}{y}\right) - M\left(\frac{dx}{x}\right)$$
(6)

 In hypoxic conditions, only low-level damage component is reduced

Electronic build-up in entrance channel

- Electronic build-up in entrance channel
- Otherwise, energy spectrum weakly dependent on depth

Weak depth dependence seen in proton beam

- Weak depth dependence seen in proton beam
- Resulting difference between electron-induced complex damage yield almost constant

- Weak depth dependence seen in proton beam
- Resulting difference between electron-induced complex damage yield almost constant
- Consequence: only need to measure proton spectra

- Weak depth dependence seen in proton beam
- Resulting difference between electron-induced complex damage yield almost constant
- Consequence: only need to measure proton spectra
- In Monte Carlo, can calculate F_{cd}(E) on the fly for each history instead of obtaining a spectrum explicitly

 Use density functional theory (DFT) to obtain electron distribution in small (10bp) segment of B-DNA

- Use density functional theory (DFT) to obtain electron distribution in small (10bp) segment of B-DNA
- Calculate electrostatic potential map

- Use density functional theory (DFT) to obtain electron distribution in small (10bp) segment of B-DNA
- Calculate electrostatic potential map
- Find cross-section from scattering through Born series

- Use density functional theory (DFT) to obtain electron distribution in small (10bp) segment of B-DNA
- Calculate electrostatic potential map
- Find cross-section from scattering through Born series
- Second term in expansion is proportional to probability of two ionisation events within 10bp. This is labelled a DSB

- Use density functional theory (DFT) to obtain electron distribution in small (10bp) segment of B-DNA
- Calculate electrostatic potential map
- Find cross-section from scattering through Born series
- Second term in expansion is proportional to probability of two ionisation events within 10bp. This is labelled a DSB
- Use more terms for more clustered damage

Summary of project aims

Refine physical DNA-damage model

Summary of project aims

- Refine physical DNA-damage model
- Incorporate RBE into TPS on a voxel-by-voxel basis for proton and other particle (e.g. helium ion, carbon ion) therapies

Summary of project aims

- Refine physical DNA-damage model
- Incorporate RBE into TPS on a voxel-by-voxel basis for proton and other particle (e.g. helium ion, carbon ion) therapies
- Provide algorithmic framework for fast IMPT optimization (PTV- and robustness-based) which includes constraints on the RBE distribution.

Acknowledgements

This work was supported by Cancer Research UK grant number C2195/A25197, through a CRUK Oxford Centre DPhil Prize Studentship.

DPhil supervisors: Prof. Frank Van den Heuvel, Prof. Maria Hawkins, Dr. Francesca Fiorini

Radiation Therapy Medical Physics Group: Prof. Frank Van den Heuvel, Dr. Francesca Fiorini, Dr. Suliana Teoh, Dr. Ben George, Mark Brooke.

Many thanks to the General Sir John Monash Foundation, Cancer Research UK and the Clarendon Fund for supporting my studies.

mark.brooke@oncology.ox.ac.uk

References

- K. W. Caldecott. Single-strand break repair and genetic disease. Nature Reviews Genetics, 9:619–631, Aug 2008. URL http://dx.doi.org/10.1038/nrg2380. Review Article.
- M. Jermann. Particle therapy statistics in 2014. International Journal of Particle Therapy, 2(1):50–54, 2015. doi: 10.14338/IJPT-15-00013. URL https://doi.org/10.14338/IJPT-15-00013.
- G. R. Kepner. Saturation behavior: a general relationship described by a simple second-order differential equation. Theoretical Biology and Medical Modelling, 7(1):11, Apr 2010. ISSN 1742-4682. doi: 10.1186/1742-4682-7-11. URL https://doi.org/10.1186/1742-4682-7-11.
- M. Lomax, L. Folkes, and P. O'Neill. Biological consequences of radiation-induced dna damage: Relevance to radiotherapy. Clinical Oncology, 25 (10):878 585, 2013. ISSN 0936-6555. doi: https://doi.org/10.1016/j.clon.2013.06.007. URL http://www.sciencedintect.com/science/article/pii/S0936655513002471. Advances in Clinical Radiobiology.
- A. Pullman, B. Pullman, and R. Lavery. Molecular electrostatic potential versus field. significance for dna and its constituents. Journal of Molecular Structure: THEOCHEM, 93:85 - 91, 1983. ISSN 0166-1280. doi: https://doi.org/10.1016/0166-1280(83)80093-1. URL http://www.sciencedirect.com/science/article/pii/0166128083800931. Proceedings of the XIIIth Congress of Theoretical Chemists of Latin Expression.
- V. A. Semenenko and R. D. Stewart. A fast monte carlo algorithm to simulate the spectrum of dna damages formed by ionizing radiation. Research, 161(4):451–457, 2004. ISSN 00337587, 19385404. URL http://www.jstor.org/stable/3581187.
- F. Van den Heuvel. A closed parameterization of dna-damage by charged particles, as a function of energy a geometrical approach. PLOS ONE, 9(10):1-9, 10 2014. doi: 10.1371/journal.pone.0110333. URL https://doi.org/10.1371/journal.pone.0110333.
- J. F. Ward. Biochemistry of dna lesions. 104(2):S103-S111, 1985. doi: 10.2307/3576637. URL http://ezproxy-prd.bodleian.ox.ac.uk:2084/stable/3576637.

