## TOWARDS FLUENCE MODULATED PROTON COMPUTED TOMOGRAPHY

**G. Landry<sup>1</sup>**, R.P. Johnson<sup>2</sup>, M. Pankuch<sup>3</sup>, S. Rit<sup>4</sup>, C. Belka<sup>5</sup>, R.W. Schulte<sup>6</sup>, K. Parodi<sup>1</sup>, G. Dedes<sup>1</sup>

<sup>1</sup>Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich)
 <sup>2</sup>Department of Physics, U.C. Santa Cruz
 <sup>3</sup>Northwestern Medicine Chicago Proton Center, Warrenville
 <sup>4</sup>Université de Lyon, CREATIS, CNRS UMR5220 Inserm U1044, INSA-Lyon, Université Lyon 1
 <sup>5</sup>Department of Radiation Oncology, University Hospital, LMU Munich and German Cancer Consortium (DKTK)
 <sup>6</sup>Division of Radiation Research, Loma Linda University, Loma Linda

Friday June 15<sup>th</sup> 2018

Lyon Proton Imaging Workshop





### PROTON THERAPY AND ANATOMICAL CHANGES



#### C. Kurz et al., ICTR-PHE 2016

15/06/2018

### PROTON THERAPY AND ANATOMICAL CHANGES



### DAILY IMAGING AND DOSE

#### **Dose reduction in X-ray CT**

- Bowtie filters
- Automatic exposure control

# Fluence field modulated CT requirements

- Fluence modulation apparatus
  - digital beam attenuator<sup>1</sup>
  - binary collimator (Tomotherapy)<sup>2</sup>
  - multiple aperture devices<sup>3</sup>
  - piecewise-linear dynamic attenuators<sup>4</sup>

<sup>1</sup>Szczykutowicz and Mistretta 2014 Phys Med Biol
<sup>2</sup>Szczykutowicz et al. 2015 Phys Med Biol
<sup>3</sup>Stayman et al 2016 SPIE Med Imaging
<sup>4</sup>Shunhavanich et al. 2018 SPIE Med Imaging

Bartolac et al. 2011 Med Phys

### DAILY IMAGING AND DOSE



# Fluence field modulated CT requirements



Bartolac et al. 2011 Med Phys

#### 15/06/2018

### **PROJECT GOAL**

#### Reduce pCT imaging dose as low as possible for frequent onisocenter imaging

#### Extend FFMCT to proton $CT \rightarrow fluence \mod CT$ (FMpCT)

## FLUENCE MODULATED PROTON CT

# Imitate evolution of treatment technology

- From passively scattered broad beams to pencil beam scanning (PBS)
  - Most centers are nowadays equipped with PBS
- PBS permits fluence modulation on a pencil beam (PB) per PB basis

#### **Proof of principle FMpCT**

Simple binary scheme based on PB-ROI intersection

#### high fluence PB selection

 — selected PB keep full fluence (FF)
 — else reduction by fluence modulation factor (FMF)



binary sinogram





Dedes et al. 2017 Phys Med Biol

#### Monte Carlo (MC) simulation of idealized pCT collaboration scanner

- Geant4
- Two detection planes
- Ideal energy/position/direction \_\_\_\_ scoring

#### Reconstruction

FBP accounting for curved paths Rit et al. 2013 Med Phys





|                                                            | Pat1                                     | $\frac{(\text{RSP} - \text{RSP}_{\text{ref}})/\text{RSP}_{\text{ref}}(\%)^{\bigstar}}{\text{Noise}}$ |                   | $\frac{(\text{RSP} - \text{RSP}_{\text{ref}})/\text{RSP}_{\text{ref}}\left(\%\right)}{\text{Mean}}^{*}$ |                      |
|------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|----------------------|
|                                                            |                                          |                                                                                                      |                   |                                                                                                         |                      |
| *noiseless                                                 |                                          | Uniform                                                                                              | FMpCT             | Uniform                                                                                                 | FMpCT                |
| reference<br>RSP<br>provided by<br>Geant4 CT<br>conversion | FF<br>0.1 · FF<br>0.05 · FF<br>0.01 · FF | 1.8<br>5.5<br>8.3<br>30.1                                                                            | 1.8<br>1.8<br>1.9 | $-0.1 \\ -0.1 \\ -0.2 \\ 0.6$                                                                           | -0.2<br>-0.2<br>-0.7 |

15/06/2018



G. Landry et al. - FMpCT

15/06/2018

12

#### Fluence modulation on simulated pencil (PB) scans: dose calculation



Dedes et al. 2017 Phys Med Biol

15/06/2018

13

G. Landry et al. — FMpCT

#### phase II preclinical prototype pCT scanner



Operated at the PBS room of the Northwestern Medicine Chicago Proton Center

#### simple phantom



15 cm Ø PMMA container filled with water

#### central FMpCT-ROI



- PBS fluence pattern constant with rotation
- Fluence modulated by spot dwell time
- Beam current adjusted to yield 400 kHz
  - 27 msec dwell time

step and shoot acquisition 45 projections

#### 3 pCT scans acquired

FF (2.2 M protons/proj) 0.5 FMpCT 0.2 FMpCT

> PB grid 10 × 20 PB 1 cm FWHM 1 cm spacing ¼ PB shift





Dedes et al. 2018 Med Phys

#### Fluence modulation on experimental (PB) scans: image quality



Dedes et al. 2018 Med Phys

G. Landry et al. - FMpCT

Fluence modulation on experimental (PB) scans: imaging dose



#### Relation between PB fluence and image quality

necessary to move beyond "forward planning" approach based on PB interception of ROI and binary fluence levels

#### **Projection pixel variance**

verified for the central pixel



Schulte et al. 2005 Med Phys



Schulte et al. 2005 Med Phys

Increasing noise towards object's edge?

#### **Geant4 MC simulation**

- parallel protons
- water cylinder
- ideal detectors



G. Landry et al. — FMpCT



G. Landry et al. — FMpCT



G. Landry et al. - FMpCT



#### 15/06/2018

G. Landry et al. — FMpCT

"ideal" vs. realistic Geant4 MC simulation

- *N*=60 noise realizations
- image-pixelwise standard deviation calculation
- distance driven binning reconstructions



G. Landry et al. - FMpCT



"ideal" vs. realistic Geant4 MC simulation

- N=60 noise realizations
- image-pixelwise standard deviation calculation
- distance driven binning reconstructions



"ideal" vs. realistic Geant4 MC simulation

- N=60 noise realizations
- image-pixelwise standard deviation calculation
- distance driven binning reconstructions

slide courtesy Jannis Dickmann, LMU Munich

## OUTLOOK

#### Variance reconstruction

- Understand detector contribution using realistic simulations
- Compare to experimental data
- Impact of divergent beams?
  - Heterogeneous/clinical geometries

#### Fluence modulation patterns

- Develop optimization based on variance reconstruction theory
- MC simulation based projection variance to account for MCS

#### **Experimental FMpCT**

- Implement optimized fluence pattern
  - Synchronize with scanner rotation
  - Explore continuous rotation

#### **Comparison to X-ray CT**

- Fan beam and CBCT

### ACKNOWLEDGEMENTS





15/06/2018



Dr. Florian Kamp





#### Nick Detrich

**Martin Hillbrand** 





**Keith Schubert** 

LOMA LINDA UNIVERSITY

Valentina Giacometti

Vladimir Bashkirov

ALL AND ALL AN

**George Coutrakon** 



G. Landry et al. - FMpCT





