

Comparison of proton CT and dual energy X-ray CT in terms of relative stopping power accuracy: experiment and simulations

<u>G. Dedes</u>¹, J. Dickmann¹, K. Niepel¹, P. Wesp¹, R. P. Johnson², M. Pankuch³, V. Bashkirov⁴, S. Rit⁵, L. Volz^{6,7}, R. W. Schulte⁴, G. Landry^{8,9,1} and K. Parodi¹

¹Ludwig-Maximilians-Universität München ²U.C. Santa Cruz

⁴ Loma Linda University

⁷ Heidelberg University

⁵ Université de Lyon, CREATIS
 ⁶ Deutsches Krebsfoschungszentrum (DKFZ)
 ⁸ University Hospital, LMU Munich
 ⁹ German Cancer Consortium (DKTK)

³ Northwestern Medicine Chicago Proton Center

5th Annual Loma Linda Workshop, July 2019

•

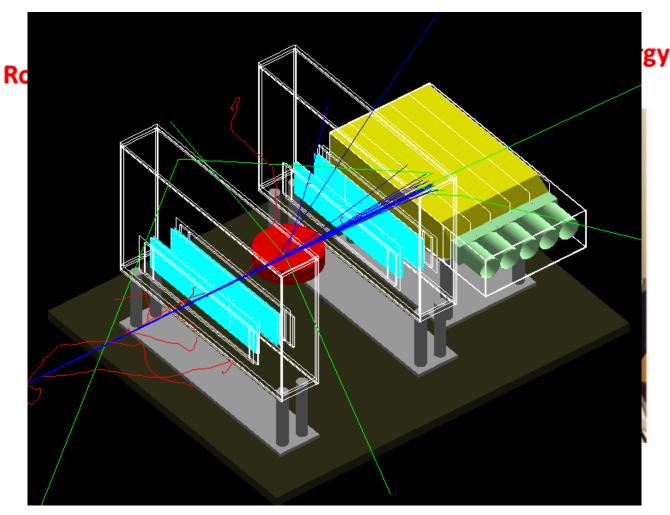
ullet

۲

۲

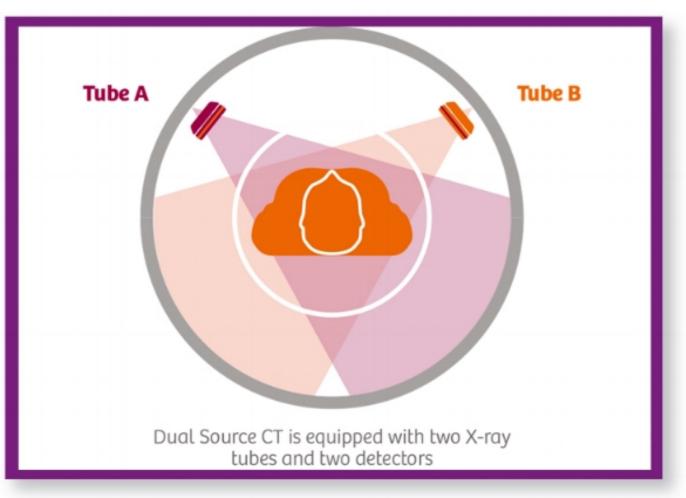
lacksquare

- Proton therapy: accurate relative proton stopping power (RSP) map of patient is essential
 - (a) nominal tumor situation soft tissue heart (OAR) Current practice (beam direction lung up to **3%** errors ir dose 1,000 1.2001-9-900000-0-0-j Dual energy X-ray range effects? (b) "uncertain" depth situation Both modalities r protons (SOBP) protons (Bragg Peak) photons dose Annum may The two modaliti 1,000 1,500 2,000 2,500 3,000 Present first dire depth CT Number (HU)



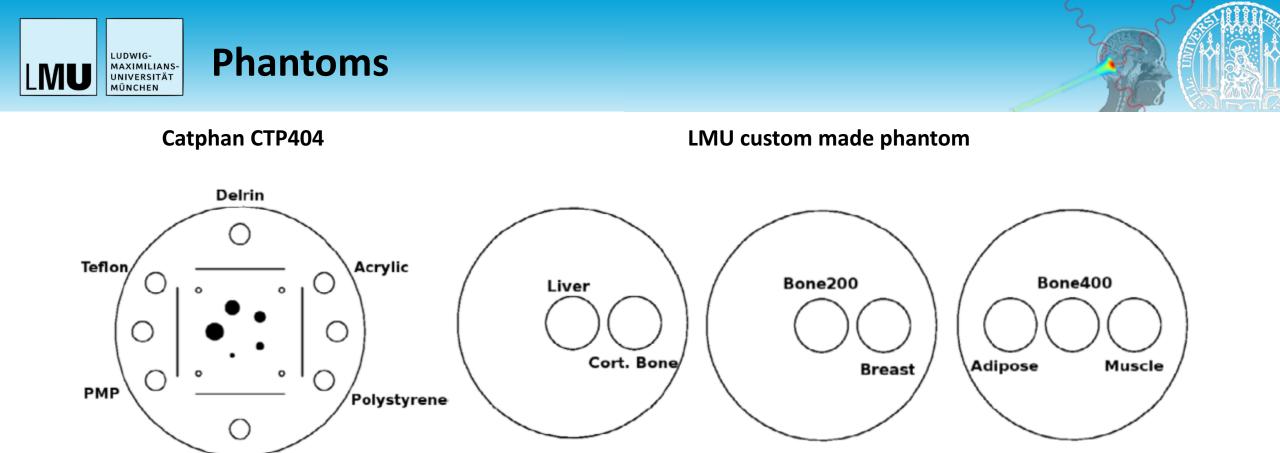
Part 1: pCT – DECT comparison in terms of RSP accuracy

Detector **Proton CT phase II prototype scanner (LLU/UCSC)**^[1]


- Silicon strip detector tracker
- 5-stage scintillator energy detector
- 200 MeV protons

Reconstruction^[2]

- Filtered backprojection
- Most likely paths
- $3-\sigma$ cuts on energy and angle (on 2 mm x 2 mm pixels)
- 1 mm x 1 mm x 1 mm image grid



Siemens SOMATOM Definition Force^[1]

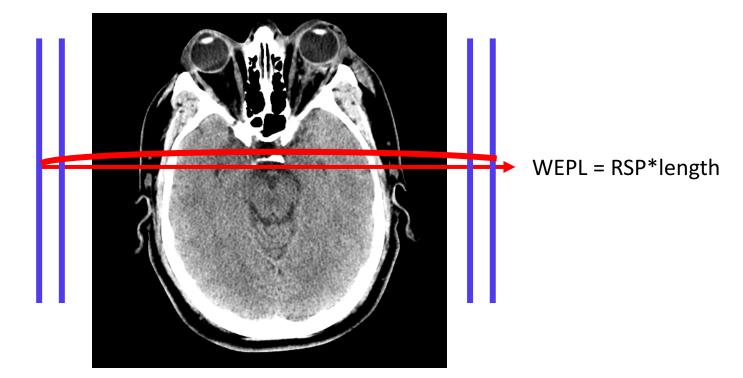
Some scanner info

- Dual source
- 90 kVp and 150 kVp
- Iterative reconstruction (from the vendor)

- 4 phantoms, containing 13 cylindrical inserts of tissue equivalent plastic inserts
- Covering an RSP range from **0.88** to **1.79**
- Insert radii: 12.2 mm and 30 mm

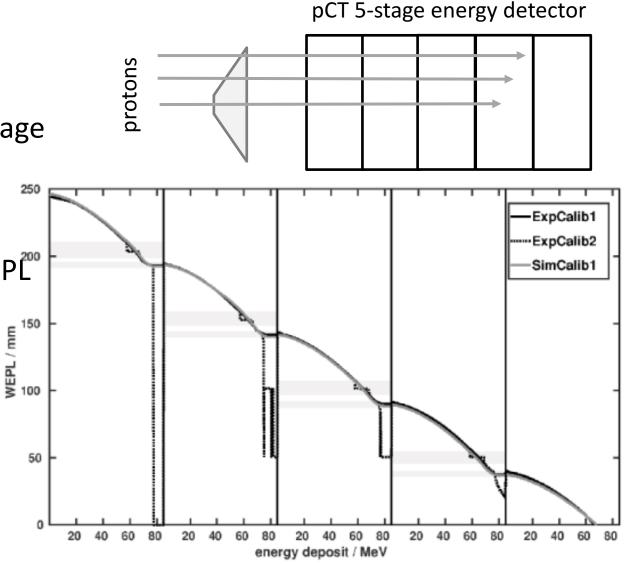
LDPE

• Phantom radii: 130 mm and 150 mm



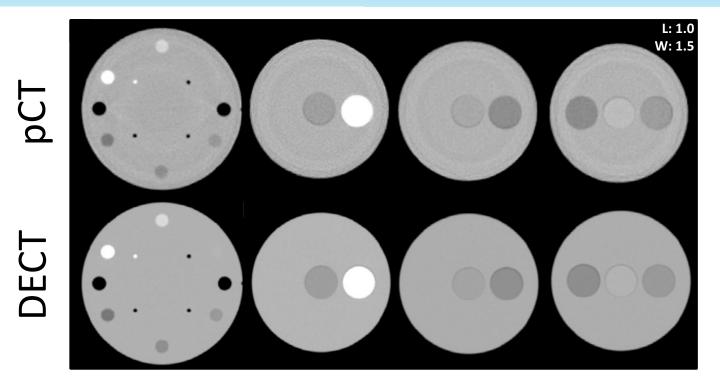
• Reference RSP measured with a variable water column at HIT

Insert	Phantom	$\mathrm{RSP}_{\mathrm{ref}}$	
PMP	CTP404	0.88	
Adipose	LMU	0.97	
LDPE	CTP404	0.98	
Breast	LMU	0.99	
Polystyrene	CTP404	1.02	
Muscle	LMU	1.06	
Liver [*]	LMU	1.06	
$Bone 200^*$	LMU	1.11	
Acrylic	CTP404	1.16	
$Bone400^*$	LMU	1.22	
Delrin	CTP404	1.36	
Cort. Bone	LMU	1.69	
Teflon	CTP404	1.79	



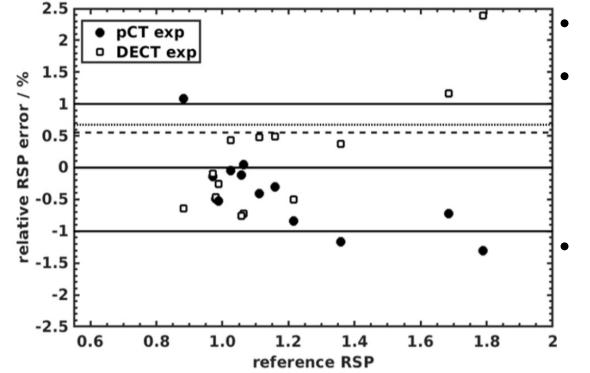
- Directly RSP
- From each projection: WEPL (line integral of RSP)
- From the tracker: position and direction information (estimation of curved path)
- Reconstruction of RSP taking into account curved proton paths

- Remember: 5-stage energy detector
- Inter-stage info: determine the stopping stage
- Intra-stage info: determine stopping within a stage
- Use a known object to create a calibration between signal in each stage and traversed WEP²⁰



- Use the HU obtained with the two energies
- Obtain a $ho_{\rm e}$ fit
- Knowing $ho_{
 m e}$, obtain a $Z_{
 m eff}$ fit
- Knowing Z_{eff} , obtain an / fit

• Having ρ_{e} and and I, RSP can be calculated from Bethe $\ln \frac{I}{I_{w}} = C_{1} \left[\left(\frac{Z_{eff}}{Z_{eff,w}} \right)^{3.3} - 1 \right] - C_{0} \gamma_{0} \underbrace{\bigcirc}_{4.4}^{4.6} \underbrace{\bigcirc}_{4.2}^{4.6} \underbrace{\bigcirc}_{5} \underbrace{\bigcirc}_{0} \underbrace{\bigcirc$

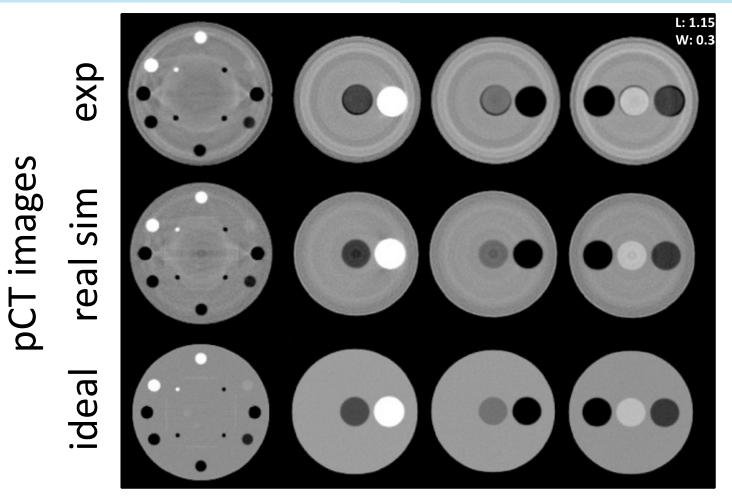

bony tissue fit

- Imaging dose: **1.5 mGy 1.9 mGy** for pCT and **35.7** mGy for DECT (DECT noise 40x lower)
- Scan duration: 6 min for pCT and 14 sec for DECT
- pCT images contained ring artifacts affecting RSP accuracy

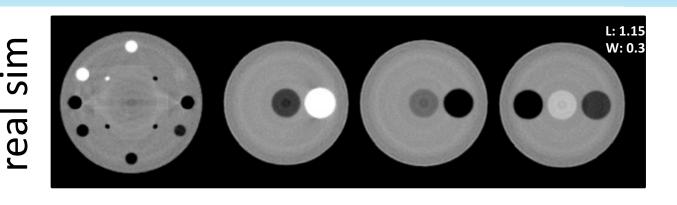
- RSP accuracy mostly within ±1% for both modalities
- Above 1% errors for pCT:
 - Teflon: -1.31%, RSP_{ref} = 1.79
 - Delrin: -1.16%, RSP_{ref} = 1.36
 - PMP: 1.08%, RSP_{ref} = 0.88
 - Above 1% errors for DECT:
 - ➤ Teflon: 2.38%, RSP_{ref} = 1.79
 - Cort. Bone: 1.17%, RSP_{ref} = 1.69
- Mean absolute percent error over all 13 inserts: 0.55% for pCT, 0.67% for DECT
- Mean absolute percent error excluding Teflon insert: **0.49%** for pCT, **0.53%** for DECT

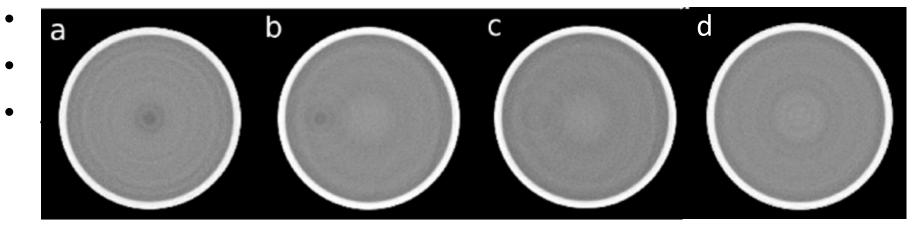
LMU

•


Insert	Phantom	$\mathrm{RSP}_{\mathrm{ref}}$	$\mathrm{pCT}_{\mathrm{exp}}$	$\mathrm{pCT}_{\mathrm{sim}}^{\mathrm{ideal}}$	$\mathrm{pCT}_{\mathrm{sim}}^{\mathrm{real}}$	DECT
			%	%	%	%
PMP	CTP404	0.88	1.08 ± 0.11	-0.07 ± 0.09	-0.22 ± 0.11	-0.64 ± 0.02
Adipose	LMU	0.97	-0.14 ± 0.04	-0.36 ± 0.03	-0.95 ± 0.04	-0.09 ± 0.01
LDPE	CTP404	0.98	-0.49 ± 0.11	-0.18 ± 0.08	-0.08 ± 0.10	-0.46 ± 0.02
Breast	LMU	0.99	-0.52 ± 0.04	0.05 ± 0.03	-0.39 ± 0.04	-0.25 ± 0.01
Polystyrene	CTP404	1.02	-0.04 ± 0.10	0.02 ± 0.08	-0.04 ± 0.10	0.43 ± 0.02
Muscle	LMU	1.06	-0.12 ± 0.04	-0.44 ± 0.03	-0.95 ± 0.03	-0.76 ± 0.01
Liver*	LMU	1.06	0.04 ± 0.03	-0.17 ± 0.03	-1.47 ± 0.03	-0.73 ± 0.01
$Bone200^*$	LMU	1.11	-0.41 ± 0.03	-0.14 ± 0.03	-1.36 ± 0.03	0.48 ± 0.01
Acrylic	CTP404	1.16	-0.30 ± 0.10	-0.10 ± 0.07	-0.44 ± 0.09	0.49 ± 0.01
Bone400*	LMU	1.22	-0.84 ± 0.03	-0.44 ± 0.03	-1.11 ± 0.03	-0.50 ± 0.01
Delrin	CTP404	1.36	-1.16 ± 0.09	-0.01 ± 0.07	-0.45 ± 0.09	0.38 ± 0.02
Cort. Bone	LMU	1.69	-0.73 ± 0.02	-0.21 ± 0.02	-0.37 ± 0.02	1.17 ± 0.01
Teflon	CTP404	1.79	-1.31 ± 0.05	-0.06 ± 0.05	-1.11 ± 0.05	2.38 ± 0.01
MAPE %			0.55	0.17	0.69	0.67

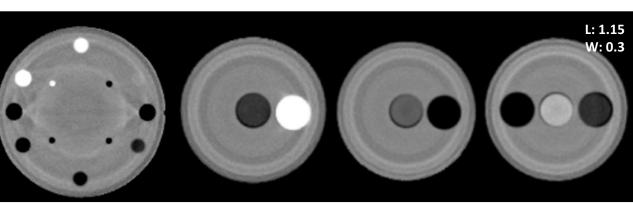
Part 2: pCT artifacts



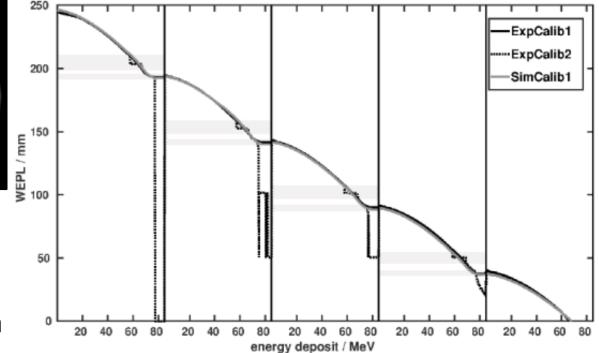


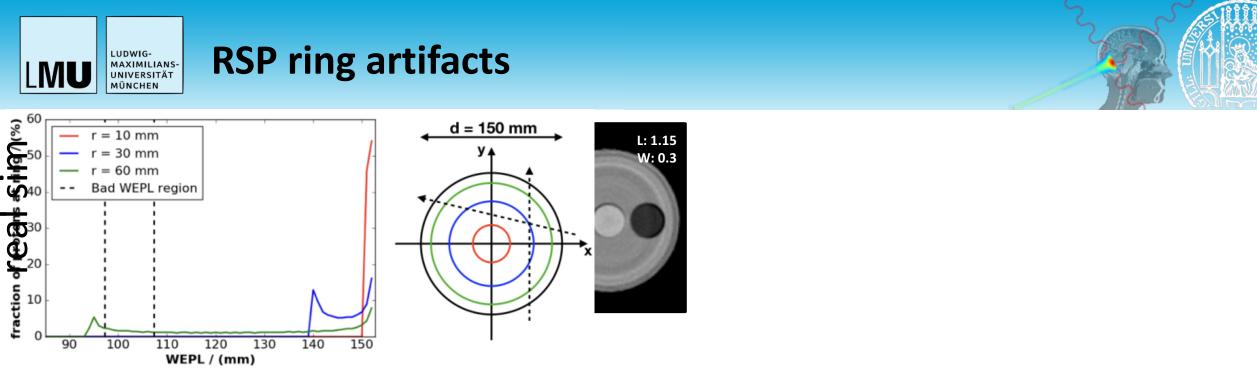
• The observed artifacts (of this magnitude) are not related to the reconstruction algorithm

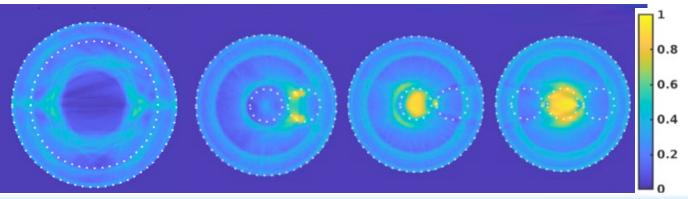
RSP location fixed artifacts



• Geant4 code in github containts a fix for the tracker gap geometry




RSP ring artifacts



- Lets assume that for some particular WEPLs, our detector is slightly less accurate
- In homogeneous cylindrical objects this results in ring artifacts
- Our calibration curve indicates that there potentially are such WEPL regions

- During acquisition, every voxel is traversed by protons of different WEPLs
- Calculating for each voxel, the fraction of protons which according to the calibration have lower accuracy WEPLs (kink regions and stage interfaces)

- First direct experimental comparison of pCT and DECT on RSP accuracy
- Both modalities on average well below 1% error (pCT 0.55%, DECT 0.67%)
- pCT phase II prototype already competitive
- pCT promising for low dose, on isocenter, accurate RSP imaging
- Reliable simulation tool for understanding the scanner
- Artifact mitigation can lead to further improvement in pCT RSP accuracy

Thank you!

Physics in Medicine & Biology

ACCEPTED MANUSCRIPT

Experimental comparison of proton CT and dual energy X– ray CT for relative stopping power estimation in proton therapy

Georgios Dedes¹, Jannis Dickmann², Katharina Beatrice Niepel¹, Philipp Wesp³, Robert P Johnson⁴, Mark Pankuch⁵, Vladimir A Bashkirov⁶, Simon Rit⁷, Lennart Volz⁸, Reinhard W Schulte⁹, Guillaume Landry¹ and Katia Parodi¹ – Hide full author list Accepted Manuscript online 20 June 2019 • © 2019 Institute of Physics and Engineering in Medicine