Material Budget Imaging

Imaging in a

Probe

Interaction with the target

- x-ray, neutron

- absorption

Measure physical quantity - intensity

Imaging in a

Probe

- x-ray, neutron
- charged particle

Interaction with the target

- absorption
- energy loss
- scattering

Measure physical quantity

- intensity
- energy loss (delta E)
- variance of deflection angle

Physics of Material Budget Imaging

- High-energy particle undergoes multiple Coulomb scattering when traversing material
 - Particle is deflected
- Scattering angle distribution: Gaussian-like centre with tails at larger angles
- The Gaussian width predicted by Highland

$$\Theta_0 = \left(\frac{13.6\,\mathrm{MeV}}{\beta cp}\cdot z\right)\cdot\sqrt{\varepsilon}\cdot\left(1+0.038\ln\varepsilon\right)$$

Material Budget: $\varepsilon = x/X_0$

x: Path length in the material

- X₀: Material's radiation length
 - (e- loses all but 1/e-th of its energy)
- ➔ Measurement:
 - Scattering angle distribution
- Characteristic quantity: Material budget

Material Budget Imaging

Imaging method based on multiple scattering

→ Measure each trajectory (in front and behind sample!)

- \rightarrow Group electrons into pixels at virtual plane through sample
- → Calculate width of angular distribution per pixel
- → Repeat for all projections and perform backprojection

EUDET Beam Telescopes

- 6 sensors: Mimosa 26
 - Pixel Pitch: 18.4 μm x 18.4 μm
 - Active area: 10.6 mm x 21.2 mm
 - Intrinsic sensor resolution: > 3.24 μ m
- 4 PMTs as coincidence trigger
- Track resolution at sample: $\sigma = 2 10 \ \mu m$

- AllPix Detector Simulation Framework (based on Geant4 libraries)
 - Simulation of the particle propagation
 - Simulation of detector response
 - Data processing via exact same chain as with data

Reconstruction chain

From data taking to tomographic images

Track reco and width estimation

General Broken Lines (GBL) for track fitting

- Find the most probable trajectory based on the measured hits
- Includes known MB at planes
- Introduces unbiased kink at the sample

Method for width estimation

- Calculate Average Absolute Deviation of the inner 90% quantile
- Best performance out of 11 tested fitting and statistical methods
- Conversion to MB via Highland formula or via calibration

Challenges

- Non-Gaussian tails of the distribution
- Low statistics

- Invert fit to data for the calibration of unknown samples $\rightarrow \epsilon(AAD90; E)$

Calculation of the Material Budget from scattering width

- Inverting the Highland formula for a determination of the material budget leads to discrepancies to expected values

Acquiring calibration curves

Calibration

- Measure the angle distribution for known scatterers
- Metal foils from 13 um of aluminum to 2 cm of tungsten
 - \rightarrow AAD90(ϵ ; E)

$$\Theta_0 = \left(\frac{13.6\,\mathrm{MeV}}{\beta cp} \cdot z\right) \cdot \sqrt{\varepsilon} \cdot (1 + 0.038\ln\varepsilon)$$

Why MBI?

Considerable interest and potential in MBI

- Various LHC upgrade activities in particle physics
 - \rightarrow Estimate of 2D MB distribution for realistic detector description
- Non-destructive testing of prototypes
 - \rightarrow e.g. batteries, high-Z material
- Medical imaging/treatment planning
 - \rightarrow possible dose advantage
 - \rightarrow possibly less artefacts

Measure 200 to 2000 projections \rightarrow Need high rates

Seamless image/no stitching → Need **large area** beam + detector

MBI at Belle II / ATLAS

Belle II PXD module

ATLAS Tracker endcap petal

U. Stolzenberg et al.

Results of 2D MBI

CMS Tracker Support Structure Prototype

- Carbon Foam / CFRP plates / Cooling pipe / Glue
- ➔ Qualitative analysis
- ➔ Quantitative analysis

Results of 2D MBI

Qualitative Analysis

- E.g. investigate glue distribution

Quantitative Analysis

 Measure the actual material budget or radiation length of the sample

X ₀ [mm]	Prediction	MBI	(^{x,y})
Carbon foam	2247 ± 10%	1930 ± 360 (std)	<u>-</u> చ్చ ³⁵ 30 25
CFRP	264 ± 10%	274 ± 17 (std)	15 10 5
Water	360.8	soon!	0

Examples of 3D MBI

Reconstruction

Examples of 3D MBI

Reconstruction

Examples of 3D MBI

Reconstruction

DESY. | Material Budget Imaging | Paul Schütze, Hendrik Jansen |

Comparison to CT

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Example of 3D MBI

16 mm diameter 3D printed nickel

Example of 3D MBI

16 mm diameter 3D printed nickel

Tissue-like samples, 500 MeV

Tissue-like samples, 500 MeV

Conclusion

- MBI works up to at least $\varepsilon = 100\%$ (human's head ~80%)
- Voxel size limited to ~10 µm
 practical limit is rate dependent → 50 µm @ DESY
- Started at 2 GeV, reached 500 MeV easily (method-wise)
- Multitude of samples tested

Outlook

- Calibration curves for tissue-equivalent materials (Summer student)
- Improve image reconstruction (PD position open)
- Estimate CNR a.f.o. dose (particles per pixel per projection)
- Understand clinical needs (CNR, resolution) and dose limits
- Investigate market potential

Contrast vs Resolution

