Charged particle imaging with Timepix and Timepix3 Pixel Detectors

Cristina Oancea¹,², Carlos Granja¹, Jan Jakubek¹
Anna Mackova³, Vladimir Havranek³, Vaclav Olsansky³

¹ADVACAM*, Prague, Czech Republic
²Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest, Romania
³Nuclear Physics Institute, Czech Acad. Sci., Rez-Prague, Czech Republic

*Start-up of the Medipix Collaboration/IEAP CTU Prague

www.advacam.com
cristina.oancea@advacam.com
Particle imaging with Timepix and Timepix3 detectors
Preliminary radiography experiments, methodology

Outline

- Pixel detectors
- Ion Radiography, imaging principle
- Proton micro-beam experiments
 - Al stairs-like target
 - Grid target
- Low-energy proton beam radiography
- Outlook

<table>
<thead>
<tr>
<th>Particle</th>
<th>Energy</th>
<th>Source</th>
<th>Sample</th>
<th>Detectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>5.5 MeV</td>
<td>Radionuclide lab source</td>
<td>- Spider - Wing of fly</td>
<td>Timepix 300 μm Si sensor</td>
</tr>
<tr>
<td>Proton</td>
<td>3 MeV</td>
<td>Tandetron</td>
<td>- Al foils stairs - Metal grid</td>
<td>AdvaPix Timepix3 300 μm Si sensor</td>
</tr>
<tr>
<td>Proton</td>
<td>20, 30 MeV</td>
<td>Cyclotron</td>
<td>- Foils - PCB - Plastic mask</td>
<td>AdvaPix Timepix3 500 μm Si sensor</td>
</tr>
</tbody>
</table>
Ion Radiography with energy sensitive pixel detectors

Motivation

• Ion imaging can improve particle therapy, reduce uncertainties, …

• Hybrid semiconductor pixel detectors Timepix, Timepix3
 • High spatial granularity (pixel pitch 55 µm) + particle track analysis → sub-pixel/µm scale resolution
 • Quantum imaging sensitivity → Low doses needed
 • Per-pixel spectrometry → High-contrast imaging
 • Multi-parameter image generation for single particles
 • Energy deposition
 • Dose
 • Particle Tracking, LET, direction for energetic charged particles
 • Imaging of soft-tissue and low-contrast objects
 • Lower doses, small/thin objects
Hybrid Semiconductor Pixel Detectors

Timepix3 ASIC

Fast pixel detectors
- AdvaPIX TimePIX3
- Si, CdTe, CZT sensors

Features:
- Pixel size of 55 µm
- 1.6 Mega pixels
- Sensitive area
- (can be larger if needed)
- Gap-less tilling

Large area imagers

- **Fast camera**
 - Single chip
 - 256x256 pixels
 - 14x14 mm
- **WidePIX L**
 - 2x15 = 30 chips
 - 3840x512 pixels
 - 210x30 mm
- **MiniPIX TimePIX3**
 - Si or CZT sensors
 - 256x256 pixels
 - 14x14 mm

Pattern recognition analysis of single particle tracks
- Particle direction tracking in 3D
- Wide Field of View (2π), no collimators
- Fast data acquisition (ns)
- Records simultaneously Time of arrival (TOA) and Energy deposited (TOT) by individual tracks
- Energy of all charged particles starting from few keV up to highly energetic particles.
Ion Radiography with pixel detectors Timepix

Per-pixel energy sensitivity

Imaging principle

- Instead of registering the intensity of the transmitted beam, we measure changes in the energy of single particles → imaging contrast from energy loss changes sensitive to sample density.

- A single particle is sufficient in each imaging spatial bin.

- Mono-energetic charged particle beams → imaging + inspection of thin samples (thin layers, foils).

- Precision of thickness measurement can reach sub-pixel / μm-scale.

Radiography of thin Mylar foils

- Energy spectrum measurement in air, Timepix 300 um Si

- Table top setup, measurement in air, Timepix 300 um Si

- Energy spectrum of alpha particles from \(^{241}\text{Am}\) passing through a sample composed of 8 overlapping mylar foils of 4 μm (inset).
Ion Radiography with pixel detectors Timepix

Detection of heavy charged particles with Timepix \rightarrow spectrometry, track visualization

3 MeV protons, Tandetron accelerator

2D visualization

3D visualization

Pixel cluster analysis
Ion Radiography with Timepix detector
Table top setup and radionuclide lab source

By cluster analysis it can be determined:
- **Centroid** to increase spatial resolution (sub-pixel → µm-scale resolution)

Wing of a fly (less than 20 particles per pixel)

Photo, *Intensity*, *Energy*

4He, 5.5 MeV in air
Ion Radiography with Timepix

Soft tissue sample: Dry spider

- Skin thickness ≈ µm
- Very weak alpha source ~ 12 particles per frame (1 second), standard 241Am lab source
- 60 000 frames taken
- 750 000 clusters analyzed
- Not enough particles for “deep” sub-pixelization

$^4\text{He}, 5.5 \text{ MeV in vacuum}$
Ion Radiography with Timepix
Soft tissue sample: Dry spider

\[_4^\text{He}, 5.5 \text{ MeV measured in vacuum} \]

Spider radiograph obtained by measurement of energy losses of 5.5 MeV alpha particles.

The image looks dotted because only 720,000 alpha particles were used for 1 megapixel image.

\[\sim 0.7 \text{ particles per pixel} \]

\[\sim 12 \text{ particles per pixel, 65 kpixel image} \]
Proton Radiography: Cluster area

Proton beam, 3 MeV, Tandetron NPI Rez
AdvaPix Timepix3, 300 µm Si sensor

Scanned area: 3 mm x 11 mm

Cluster size distribution
Proton Radiography: Cluster energy

Timepix 3, Si sensor 300 µm
Proton beam, 3 MeV, Tandetron

Sample: Al foil stairs
Scanned area: 3 mm x 11 mm

Spatial map of cluster Energy

Cluster Energy [keV]

Energy spectrum

Resolution = 55 µm

Proton beam, 3 MeV, Tandetron

Al foils

Sample: Al foil stairs
Scanned area: 3 mm x 11 mm

Spatial map of cluster Energy
Sample: Al foil stairs

Spatial resolution: Image pixel size

- Cluster energy
 - resolution = 5 µm
 - 14 mm

- Cluster area
 - resolution = 9 µm
 - 2 mm
 - 14 mm

- resolution = 100 µm

Cluster energy and area with different resolutions.
Applications: Proton Radiography

Sample: Metallic grid

Event count

Resolution = 10 μm

Cluster area

Spatial distribution: Event counts

Spatial distribution: Cluster area

All events incl. background

Proton beam, 3 MeV, Tandetron
Timepix 3, Si sensor 300 μm
Particle imaging with Timepix and Timepix3 detectors

Summary, Outlook, References

- Simplified instrumentation, single detector setup
- Multi-parameter imaging-contrast radiographies
 - Event-by-event analysis (cluster area, energy, flux)
- Need for well-defined energy of primary beam
- Spatial resolution ≈ few μm, possible sub μm (800 nm)
- Directional and time response can be exploited, improve image quality

References & Questions at: cristina.oancea@advacam.com
Light ion / high energy Helium imaging with Timepix3 telescopes

Single detector setup Timepix, 300 μm Si sensor

- M. Martišíková, DKFZ, Heidelberg
 https://medipix.web.cern.ch
- M. Martisikova et al., DKFZ, Heidelberg
 Physics World, March 2018

Backup slides
Large area WidePix detectors with CdTe and Si sensors
The large area CdTe imaging detector with continuous sensitivity

Features:
• Pixel size of 55 µm
• 1280 x 1280 pixels = 1.6 Mega pixels
• Sensitive area of 70 x 70 mm² (can be larger if needed)
• Gap-less tilling:
 o Gaps between modules smaller than quarter of the pixel
 o Edge pixels of 100 µm

Supported sensor types:
(Bias voltage +/- 500 V)
• CdTe 1 mm
• CdTe 2 mm
• Si 300 µm

WidePix L 2(1)x10
2560x512 pixels
140x30 mm

WidePix L 2(1)x15
3840x512 pixels
210x30 mm

Suited for: CT scans
Particle Tracking with AdvaPIX TimePIX3
Directional per pixel E measurements vs particle type and angle

40 MeV 3He- (top row) and 31 MeV protons (bottom row) from the NPI-CAS Cyclotron, Prague

Cristina Oancea | 5th Annual LLU Workshop July 2019 | Loma Linda USA