PCA: Principle Component Analysis D^r Keith Evan Schubert

Why Gaussian?

Solution Strategy Constraints Strategy Constrain

Why Gaussian?

Mean and standard deviation

Multivariate Gaussians

Standard deviation forms ellipses

Geometric View

Standard deviation forms ellipses

> Fit a line

Geometric View

- Standard deviation forms ellipses
- > Fit a line
 - > Min residual
 - > Max variance

Geometric View

- Standard deviation forms ellipses
- > Fit a line
 - > Min residual
 - > Max variance

PCA = Finding the Best Directions

Algebraic View

- A number of variables (sensors, items, etc)
- Set of data measurements
- Center data
- Calculate variance and covariance

	Var 1	Var 2	Var 3
Meas 1	A_{11}	A_{12}	A13
Meas 2	A_{21}	A_{22}	A_{23}
Meas 3	A_{31}	A_{32}	A_{33}
Meas 4	A_{41}	A_{42}	A_{43}

Calculating Variance and Covariance

> Variance

> Covariance

$$\sigma_{ij}^2 = \frac{1}{n-1} A_i^T A_j$$

Combined

$$C = \frac{1}{n-1} A^T A$$

Eigen Decomposition

 $> Cx = \lambda x$

Eigen Decomposition

 $Cx = \lambda x$

 $CX = X\Lambda$

 $C = X\Lambda X^{-1}$ $C = X\Lambda X^T$

Better way to calculate

$$A = U\Sigma V^T$$

$$C = \frac{1}{n-1} A^T A$$

$$C = \frac{1}{n-1} V \Sigma^2 V^T$$