

# Imaging with ion beams at MedAustron

 $2^{\rm nd}$  lonimaging Workshop,  $11^{\rm th}$  of June, 2019

Felix Ulrich-Pur on behalf of the protonCT group at HEPHY/TU Wien









Image: MedAustron<sup>1</sup>



TU

НЕРНУ

Image: ArcGIS<sup>2</sup>

<sup>2</sup>http://www.arcgis.com/home/webmap/viewer.html?useExisting=1

MedAustron 🎴

<sup>&</sup>lt;sup>1</sup>https://medaustron.at

#### ➤ Synchrotron accelerator complex

- Circumference: 77.4 m
- 4 slots for ion sources:
  - 1 Protons
  - 2 Carbon ions
  - 3 Redundant source
  - 4 Unused, could be used for He

#### Energies:

- ★ Protons: 60 MeV to 800 MeV, Clinical energies ≤ 252.7 MeV
- ★ Carbon ions: 120 MeV/u to 400 MeV/u



![](_page_2_Picture_13.jpeg)

#### ➤ Synchrotron accelerator complex

- Four irradiation rooms:
  - ★ Beam only in one room at a time
  - IR1 Exclusive to research, protons up to 800 MeV, low rates
  - IR2 Clinical, horizontal & vertical beamline
  - IR3 Clinical, similar to room 1 (Limited to clinical energies)
  - IR4 Clinical, gantry, only protons

#### Beam parameters:

- Beam delivery: pencil beam scanning
- ► 5 s spill
- FWHM: 7 mm to 21 mm
- Clinical: 10<sup>8</sup> particles/s to 10<sup>9</sup> particles/s
- ▶ Research: NEW ≥10<sup>3</sup> particles/s

![](_page_3_Picture_15.jpeg)

Image: MedAustron

![](_page_3_Picture_17.jpeg)

#### ➤ Synchrotron accelerator complex

- Four irradiation rooms:
  - \* Beam only in one room at a time
  - IR1 Exclusive to research, protons up to 800 MeV, low rates
  - IR2 Clinical, horizontal & vertical beamline
  - IR3 Clinical, similar to room 1 (Limited to clinical energies)
  - IR4 Clinical, gantry, only protons

#### Beam parameters:

- Beam delivery: pencil beam scanning
- 5 s spill
- FWHM: 7 mm to 21 mm
- Clinical: 10<sup>8</sup> particles/s to 10<sup>9</sup> particles/s
- Research: NEW  $\geq 10^3$  particles/s

![](_page_4_Figure_15.jpeg)

![](_page_4_Picture_16.jpeg)

#### ➤ Cancer Therapy

- First patient treated in 2017
- Today:  $\approx$  27 patients/d
- Carbon ion treatment starts next month (July 2019)
- Treatment during the week

![](_page_5_Picture_7.jpeg)

Image: Treatment room

#### ➤ Research

- Regular beamtimes on weekends, nights
- TU Wien, MedUni Wien
- Imaging with ions officially part of the research strategy of MedAustron since 2018

![](_page_5_Picture_13.jpeg)

Image: IR1: research only

![](_page_5_Picture_15.jpeg)

### Imaging with ion beams at MedAustron: Overview

- Overall goal: clinical implementation of a pCT setup at MedAustron
  - Single particle counting:
    - ★ Rate had to be reduced
  - Tracking telescope prototype is operational:
    - First test: track based multiple scattering tomography
  - Implementation of a calorimeter ongoing:
    - ★ Get a full pCT setup
  - First reconstruction attempts with simulated data
  - Hardware upgrade

![](_page_6_Figure_11.jpeg)

![](_page_6_Picture_12.jpeg)

#### Rate reduction

- → Clinical rates ( $10^9$  particles per 5s) are too high
- Three different reduction methods for IR1

| Nominal rate | 10 <sup>9</sup> particles per 5s     |
|--------------|--------------------------------------|
| Method I     | $\mathcal{O}(10^7)$ particles per 5s |
| Method II    | $\mathcal{O}(10^6)$ particles per 5s |
| Method III   | $\mathcal{O}(10^4)$ particles per 5s |

- ➤ Now: rates down to ~kHz
- → Will be officially maintained by MedAustron
- ➤ Sufficiently low for our detectors
  - First tests with tracker

![](_page_7_Figure_9.jpeg)

![](_page_7_Picture_10.jpeg)

## Tracker – Setup for multiple scattering tomography

- Track based, no calorimeter needed
- ➤ Reconstruction of material budget <sup>l</sup>/<sub>X0</sub>
- → Setup:
  - Double sided silicon strip detectors (DSSD)
  - Aluminum phantom on a rotating table
  - Plastic scintillators as trigger

![](_page_8_Figure_8.jpeg)

![](_page_8_Picture_9.jpeg)

## Tracker – Prototype

- ➤ Four double-sided silicon-strip sensors ((2.56 × 2.56) cm<sup>2</sup>)
  - Thickness of 300 µm
  - X-side: p-doped with a pitch of 50 µm
  - Y-side: n-doped with a pitch of 100 µm
- → VME-based detector readout
  - APV25 ASIC [1] initially developed for CMS (BELLE-II)
  - Prototype readout for Belle-II experiment [2]
  - Achieved event-rate  $\approx 30 \, \text{Hz}$ 
    - Pure, raw, non-optimized, event-by-event readout

![](_page_9_Picture_11.jpeg)

![](_page_9_Picture_12.jpeg)

<sup>2</sup>https://doi.org/10.5170/CERN-2009-006.417

<sup>&</sup>lt;sup>1</sup>https://doi.org/10.1016/S0168-9002(01)00589-7

## Tracker – Prototype

- ➤ Four double-sided silicon-strip sensors ((2.56 × 2.56) cm<sup>2</sup>)
  - Thickness of 300 µm
  - X-side: p-doped with a pitch of 50 µm
  - Y-side: n-doped with a pitch of 100 µm
- → VME-based detector readout
  - APV25 ASIC [1] initially developed for CMS (BELLE-II)
  - Prototype readout for Belle-II experiment [2]
  - Achieved event-rate  $\approx 30 \, \text{Hz}$ 
    - Pure, raw, non-optimized, event-by-event readout

![](_page_10_Picture_11.jpeg)

![](_page_10_Picture_12.jpeg)

<sup>&</sup>lt;sup>1</sup>https://doi.org/10.1016/S0168-9002(01)00589-7

<sup>&</sup>lt;sup>2</sup>https://doi.org/10.5170/CERN-2009-006.417

## Tracker – Multiple scattering tomography algorithm

 Interpretation of Highland formula as a Radon transform

$$\Theta^2(L) \approx \left(\frac{13.6\,\mathrm{MeV}}{\beta cp}\cdot z\right)^2 \int_L \frac{1}{X_0(x,y,z)} |ds|$$

![](_page_11_Figure_4.jpeg)

- Calculation of kink angle for each track
- Projection on phantom plane, sort into pixels
- Calculate width of kink angle distribution per pixel

![](_page_11_Picture_8.jpeg)

## Tracker – Multiple scattering tomography algorithm

 Interpretation of Highland formula as a Radon transform

$$\Theta^2(L) \approx \left(\frac{13.6\,\mathrm{MeV}}{\beta cp} \cdot z\right)^2 \int_L \frac{1}{X_0(x,y,z)} |ds|$$

![](_page_12_Figure_4.jpeg)

- $\rightarrow$  Calculation of kink angle for each track
- Projection on phantom plane, sort into pixels
- Calculate width of kink angle distribution per pixel

![](_page_12_Figure_8.jpeg)

## Tracker – Multiple scattering tomography algorithm

 Interpretation of Highland formula as a Radon transform

$$\Theta^2(L) \approx \left(\frac{13.6\,\mathrm{MeV}}{\beta cp}\cdot z\right)^2 \int_L \frac{1}{X_0(x,y,z)} |ds|$$

![](_page_13_Figure_4.jpeg)

- ➤ Calculation of kink angle for each track
- Projection on phantom plane, sort into pixels
- Calculate width of kink angle distribution per pixel

![](_page_13_Figure_8.jpeg)

## Tracker – Multiple scattering tomography algorithm

 Interpretation of Highland formula as a Radon transform

$$\Theta^{2}(L) \approx \left(\frac{13.6\,\mathrm{MeV}}{\beta cp} \cdot z\right)^{2} \int_{L} \frac{1}{X_{0}(x,y,z)} |ds|$$

- ➤ Calculation of kink angle for each track
- Projection on phantom plane, sort into pixels
- Calculate width of kink angle distribution per pixel

НЕРНУ

![](_page_14_Figure_7.jpeg)

MedAustron 🎴

**Experiment:** 

## Tracker – Multiple scattering tomography results

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

- ➤ Pololu mounting hub as phantom
  - Plastic and iron screws
- ➤ A single projection with
  - 100.4 MeV proton beam
  - $\blacktriangleright$  pprox 47 008 tracks
- ➤ Clear phantom-air contrast
- ➤ Possibly a plastic-air contrast

Simulation:

![](_page_15_Figure_12.jpeg)

- ➤ Geant4 simulations of the measurements
  - ► Full 180° projections and uniform beam
  - 10<sup>6</sup> particles per projection
  - Implementing image reconstruction workflow
     [3]
  - Using scikit-image [4] tool as a reconstruction tool

![](_page_15_Picture_18.jpeg)

<sup>&</sup>lt;sup>4</sup>https://doi.org/10.1016/j.nima.2019.05.087

## Tracker – Multiple scattering tomography results

- → Geant4 simulation to test if different materials can be distinguished
- Cylindrical PMMA phantom (similar to Catphan)
  - thickness: 5 cm
  - radius: 15 cm
- ➤ Holes filled with different materials
- →  $5 \times 10^7$  particles per projection
- → 180 projections with  $1^{\circ}$  step size
- → Pixelsize: 1 mm<sup>2</sup>

![](_page_16_Figure_10.jpeg)

![](_page_16_Picture_11.jpeg)

## Tracker – Multiple scattering tomography results

- → Multiple scattering tomography with different primary proton beam energies
- $\rightarrow$  SART algorithm for reconstruction
- → Different materials can be distinguished

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_6.jpeg)

#### Calorimeter – Full pCT setup

- → Implementation of TERA range calorimeter [5]
  - 42 Scintillator slices  $(3 \times 300 \times 300 \text{ mm}^3)$ , SIPMs
  - Can measure protons up to 150 MeV
  - Readout via USB connection (DAQrate < 1 MHz)</p>
  - first full pCT measurement planned for July 2019

![](_page_18_Picture_7.jpeg)

- Synchronisation via AIDA2020 trigger and logic unit [6]
  - Exclusive trigger number per particle to correlate tracks and energy loss

Energy deposition for protons with 145.4 MeV

![](_page_18_Figure_11.jpeg)

![](_page_18_Picture_12.jpeg)

<sup>5</sup>https://doi.org/10.1016/j.nima.2013.05.110

## Calorimeter – Thoughts about upgrade solution for higher energies

- → Calorimeter can only stop protons < 150 MeV
- → First thoughts: higher energies should improve energy resolution  $\left(\propto \frac{1}{\sqrt{E}}\right)$
- → First modification attempts for current calorimeter
  - Modify to stacked calorimeter
  - 42 scintillator slices
  - Different absorbers of varying sizes
  - Based on Geant4 simulation
- ➤ Requirements
  - Stop higher protons energies
  - Cover a large energy range
  - Energy resolution < 1%

- $\rightarrow$  Brass absorbers with varying thickness
  - Same, twice and linearly increasing thickness

![](_page_19_Figure_15.jpeg)

![](_page_19_Picture_16.jpeg)

#### Calorimeter – Thoughts about upgrade solution for higher energies

- Stacked calorimeter offers broad energy range, but sampling fluctuations worsen energy resolution
- Different approach for "high energy" calorimetry has to be considered
- → Range calorimeter can still be used for our pCT setup with energies below 150 MeV ( $\frac{\sigma(E)}{E} \le 1\%$ )
- First measurement with full pCT setup planned for July 2019 at MedAustron with lower energies
  - 24h beamtime with upgraded tracker (new sensors, 6 planes) and new DAQ (zero-suppressed readout, kHz instead of Hz)

![](_page_20_Figure_7.jpeg)

#### Reconstruction –TIGRE toolbox

- TIGRE: Tomographic Iterative GPU-based Reconstruction Toolbox
- → Developed for cone beam CT (CBCT)
  - Used by collaborating group at MedUni Vienna for CBCT
- → Single or multi-GPU computation
- ➤ Modular structure
- ➤ Forward and backprojection (A(x)) are optimized for GPU computing
- Algortihms are written in high-level language (Python, Matlab)

![](_page_21_Figure_9.jpeg)

#### Image: TIGRE [7]

- → Available algorithms:
  - Filtered back projection, FDK
  - Iterative algorithms (SART, OS-SART,..)
  - Custom algorithms

![](_page_21_Picture_15.jpeg)

<sup>7</sup> https://arxiv.org/abs/1905.03748

#### Reconstruction- First test of TIGRE toolbox

- ➤ pCT reconstruction
  - Using straight line approach
  - Bragg-Kleeman approximation [8]
- → Tested FBP and OSSART (5 iterations)
  - ▶ 90 projections,  $5 \times 10^5$  particle/projection
- GPU-cluster at HEPHY (4x NVIDIA GTX 1080 TI)
  - Reconstruction time: few s

- ➤ pCT simulation with ideal detectors
  - Can measure  $\Delta E_i$  and  $\vec{x_i}$
- → cyclindrical phantom (d=1 cm)
  - ► Homogenous material: I=1 cm
  - Composite materials: I= 5 mm per layer

![](_page_22_Figure_14.jpeg)

![](_page_22_Picture_15.jpeg)

MedAustron M

#### Reconstruction – composite materials

- ➤ iron glass plastic
  - 220 MeV protons
  - ▶ SP error < 6%

- ➤ muscle bone tissue
  - 120 MeV protons
  - ▶ SP error < 6%

![](_page_23_Figure_8.jpeg)

![](_page_23_Picture_9.jpeg)

#### Reconstruction – homogeneous material

![](_page_24_Figure_2.jpeg)

- SP reconstruction of a homogeneous cylinder (G4\_A-150\_TISSUE)
  - ▶ l= 1 cm, r= 1 cm
- Stopping power errors between 4 and 6%
- Results can be used as first estimate for iterative reconstruction with MLP formalism
- ➤ Next steps:
  - Implementation of MLP formalism (in TIGRE?)
  - Or use a better suited framework, supported and used by the pCT community (RTK,..)

![](_page_24_Picture_10.jpeg)

#### Next steps – Prototype upgrades

- → Hardware:
  - Tracker upgrade
    - ★ New unirradiatied DSSDs (6 planes)
    - ★ New Belle-II DAQ with zero-surpressed data
  - First full pCT measurement at MedAustron in July 2019
    - ★ Including new tracker sensors & electronics
    - Test of ATLAS MALTA DMAPS with high rate capability [9]
  - Investigate other options for calorimetry
- Reconstruction:
  - MCS tomography for higher energies, different ions and hull detection ongoing
  - Implementation of MLP formalism in reconstruction
  - Investigate other imaging tools (RTK,..)

![](_page_25_Picture_15.jpeg)

Image: MALTA pixel sensor

![](_page_25_Picture_17.jpeg)

<sup>&</sup>lt;sup>8</sup>https://doi.org/10.1016/j.nima.2013.05.006

## Summary

| →  | MedAustron: cancer treatment with protons, carbon ions                                                  | 2017   | First treatment at MedAustron |
|----|---------------------------------------------------------------------------------------------------------|--------|-------------------------------|
| -> | Regular beamtimes available for non-clinical research                                                   | 2011   |                               |
|    | One exclusive irradiation room                                                                          |        | pCT project kickoff           |
|    | <ul> <li>Up to 800 MeV or 400 MeV u<sup>-1</sup> carbon ions</li> <li>Low fluxes for protons</li> </ul> |        |                               |
| -  | Experimental program for ion beam imaging                                                               | 2018   |                               |
|    | Part of MedAustron research strategy                                                                    |        | Tracker is operational        |
| -> | Tracker is operational                                                                                  |        |                               |
|    | Used for scattering angle imaging                                                                       |        |                               |
| -> | Implementation of calorimeter and TLU                                                                   | 2019 - |                               |
| -> | Full pCT setup in July 2019                                                                             |        | 800 MeV and Carbon            |
| -  | Image reconstruction and calorimeter alternative is work                                                |        |                               |
|    | in progress                                                                                             | *      |                               |
| →  | Overall goal: clinical implementation at MedAustron                                                     |        | MedAustron MedAustron         |

#### Acknowledgements

Group members

- ➤ Thomas Bergauer
- ➤ Alexander Burker
- ➤ Albert Hirtl
- ➤ Christian Irmler
- → Stefanie Kaser
- → Florian Pitters
- → Vera Teufelhart

Collaborators

- ➤ EBG MedAustron
- ➤ MedUni Vienna

Thank you for your attention

![](_page_27_Picture_14.jpeg)

#### Backup – MedAustron

Beam parameters for non-clinical research at MedAustron:

| particles           | protons         | carbon ions            |
|---------------------|-----------------|------------------------|
| particles per spill | $\leq 10^{10}$  | $\leq 4 	imes 10^8$    |
| extraction duration | [0.1 , 10]s     | [0.1 , 10]s            |
| beam energy         | [60 , 800]MeV   | [120 , 400]MeV/nucleon |
| magnetic rigidity   | [1.4 , 4.88]T m | [3.25,6.35]T m         |

![](_page_28_Figure_4.jpeg)

- ➤ 27 cm depth for carbon ions goal for therapy
- design of accelerator according to that requirement
  - for carbon ions achieved at 400 MeV/nucleon
  - ▶ protons available only  $\leq$  800 MeV
- → magnetic rigidity  $B\rho = p/q$

![](_page_28_Picture_10.jpeg)

#### Backup – MedAustron

Beam parameters for non-clinical research at MedAustron:

| particles           | protons         | carbon ions            |
|---------------------|-----------------|------------------------|
| particles per spill | $\leq 10^{10}$  | $\leq 4 	imes 10^8$    |
| extraction duration | [0.1 , 10]s     | [0.1 , 10]s            |
| beam energy         | [60 , 800]MeV   | [120 , 400]MeV/nucleon |
| magnetic rigidity   | [1.4 , 4.88]T m | [3.25,6.35]T m         |

![](_page_29_Figure_4.jpeg)

- ➤ 27 cm depth for carbon ions goal for therapy
- design of accelerator according to that requirement
  - for carbon ions achieved at 400 MeV/nucleon
  - ▶ protons available only  $\leq$  800 MeV
- → magnetic rigidity  $B\rho = p/q$

![](_page_29_Picture_10.jpeg)

#### Accelerator layout

![](_page_30_Picture_2.jpeg)

Image: MedAustron

![](_page_30_Picture_4.jpeg)

#### Accelerator layout – Ion source

![](_page_31_Picture_2.jpeg)

#### Accelerator layout – Ion source

![](_page_32_Picture_2.jpeg)

- ➤ 3 identical ECR sources
  - one to produce  $H_3^+$
  - $\blacktriangleright$  one to produce C<sup>4+</sup>
  - one redundant source
- $\rightarrow$  a fourth ECR source could be installed additionally
  - He ions are discussed
  - any ion fulfilling

q/m=1/3

could be accelerated

→ ions are extracted at a kinetic energy of 8 keV/nucleon

![](_page_32_Picture_13.jpeg)

#### Accelerator layout – Low energy beam transport

![](_page_33_Picture_2.jpeg)

#### Accelerator layout – Linear accelerator

![](_page_34_Picture_2.jpeg)

#### Accelerator layout – Linear accelerator

![](_page_35_Picture_2.jpeg)

Image: MedAustron

#### → RFQ

- bunching, focusing, accelerating of the particle beam
- ► RF potential difference: 70 kV
- extraction energy of the particles 400 keV
- → IH-structure interdigital H-mode-structure
  - ► RF potential difference: 500 kV
  - extraction energy of the particles: 7 MeV
- at the end of injection chain a stripping foil removes remaining electrons from ions

![](_page_35_Picture_12.jpeg)

#### Accelerator layout – Synchrotron

![](_page_36_Picture_2.jpeg)

#### Accelerator layout – Synchrotron

![](_page_37_Picture_2.jpeg)

Image: MedAustron

- ➤ circumference 78 m
- → radius 12 m

- → 16 dipole magnets
- ➤ 24 quadrupole magnets
- → 1 RF cavity for acceleration

![](_page_37_Picture_9.jpeg)

#### Accelerator layout – High energy beam transport

![](_page_38_Picture_2.jpeg)

#### Backup – Rate reduction

![](_page_39_Figure_2.jpeg)

#### Backup – MCS tomography

![](_page_40_Figure_2.jpeg)

![](_page_40_Picture_3.jpeg)

Image: MCS tomography [3]

## Backup – Reconstruction – Different projectiles

→ protons: 100 MeV

![](_page_41_Picture_3.jpeg)

![](_page_41_Figure_4.jpeg)

→ carbon ions: 150 MeV/u

![](_page_41_Picture_6.jpeg)

- Aluminum cylinders with plastic and iron screws
- ➤ slice along red line

![](_page_41_Picture_10.jpeg)

#### Backup – Calorimeter

![](_page_42_Figure_2.jpeg)

#### Resources I

- M.J. French et al. "Design and results from the APV25, a deep sub-micron CMOS front-end chip for the CMS tracker". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 466.2 (2001). 4th Int. Symp. on Development and Application of Semiconductor Tracking Detectors, pp. 359 –365. ISSN: 0168-9002. DOI: 10.1016/S0168-9002(01)00589-7.
- [2] M Friedl, C Irmler, and M Pernicka. "Readout and Data Processing Electronics for the Belle-II Silicon Vertex Detector". In: Proceedings of the Topical Workshop on Electronics for Particle Physics, TWEPP 2009 (Jan. 2008). DOI: 10.5170/CERN-2009-006.417.
- [3] Alexander Burker et al. "Imaging with ion beams at MedAustron". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2019). ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2019.05.087. URL: http://www.sciencedirect.com/science/article/pii/S016890021930751X.
- [4] Stéfan van der Walt et al. "scikit-image: image processing in Python". In: PeerJ 2 (June 2014), e453. ISSN: 2167-8359. DOI: 10.7717/peerj.453.
- [5] M. Bucciantonio et al. "Development of a fast proton range radiography system for quality assurance in hadrontherapy". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 732 (2013). Vienna Conference on Instrumentation 2013, pp. 564 –567. ISSN: 0168-9002. DOI: 10.1016/j.nima.2013.05.110.
- [6] David Cussans. "Triger Logic Unit ready". In: (2017). URL: http://cds.cern.ch/record/2297522.

- [7] Ander Biguri et al. "TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction". In: Biomedical Physics & Engineering Express 2.5 (2016), p. 055010. DOI: 10.1088/2057-1976/2/5/055010.
- [8] Rui Zhang et al. "Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions". In: *Physics in Medicine and Biology* 55.9 (2010), pp. 2481–2493. DOI: 10.1088/0031-9155/55/9/004. URL: https://doi.org/10.1088%2F0031-9155%2F5%2F9%2F004.
- [9] I. Berdalovic et al. "Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment". In: Journal of Instrumentation 13.01 (2018), pp. C01023–C01023. DOI: 10.1088/1748-0221/13/01/c01023. URL: https://doi.org/10.1088%2F1748-0221%2F13%2F01%2Fc01023.