

Optimising Geant4 settings for proton therapy

Carla Winterhalter & Adam Aitkenhead

20th – 22nd of July 2020

6th Annual Loma Linda workshop on Particle Imaging and Radiation Treatment Planning

Verification for proton therapy

Physical verification:

- Each field is measured in a solid water phantom
- Measurements at limited points
- In homogeneous geometry
- Time consuming

Figure courtesy: P. Sitch

A. Aitkenhead et al. "Automated Monte-Carlo re-calculation of proton therapy plans using Geant4/Gate: Implementation and comparison to plan-specific quality assurance measurements", *accepted in BJR* (2020)

Verification for proton therapy

Software verification:

- Independent dose calculation engine
- Often Monte Carlo based
- At the Christie NHS Foundation Trust:
 - GATE [14] v8.1 / GEANT4 [11] v10.3.3, matching the versions used in GATE-RTION v1.0.
 - AUTOMC: Automatic re-calculation and analysis framework.
 - 40-core cluster.
 - Verified for 153 patients (730 fields) planned within the first year of the proton service.

A. Aitkenhead et al. "Automated Monte-Carlo re-calculation of proton therapy plans using Geant4/Gate: Implementation and comparison to plan-specific quality assurance measurements", accepted in BJR (2020)

Grevillot, L., et al. "GATE-RTion: a GATE/Geant4 release for clinical applications in Scanned Ion Beam Therapy." accepted in Medical Physics. (2020)

Picture: C. Winterhalter, ETH Diss 25698

3

Monte Carlo for proton therapy

Geant4 based dose calculations:

- Accurate modelling of geometry and interactions
- Calculation speed!

Proton, Electron, Gamma, Neutron Picture: C. Winterhalter, ETH Diss 25698

AIM OF THIS PROJECT:

Investigate influence of GEANT4 settings on dose results and calculation time

GEANT 4 settings for proton therapy

- Physics lists
 - QGSP_BIC
 - QGSP_BIC_EMY
 - QGSP_BIC_EMZ
 - QGSP_BIC_HP_EMZ

- Cuts in phantom/range shifter & cuts in world
 - 1 mm & 10 mm (large)
 - 0.1 mm & 1 mm (small)

• Step limiter

How do these Geant4 settings influence...

- ... the agreement to commissioning measurements?
 - Depth dose curves of single energy proton spots in a water tank
 - Beam sizes in air after the range shifter
- ... the agreement to patient specific quality assurance measurements?
 - Patient fields simulated in a solid water phantom

Picture: C. Winterhalter, ETH Diss 25698

Figure courtesy: P. Sitch

How do these Geant4 settings influence...

- ... the agreement to commissioning measurements?
 - Depth dose curves of single energy proton spots in a water tank
 - Beam sizes in air after the range shifter

Picture: C. Winterhalter, ETH Diss 25698

- ... the agreement to patient specific quality assurance measurements?
 - Patient fields simulated in a solid water phantom

Figure courtesy: P. Sitch

Energy tuning

Agreement within error bars, no substantial dependence on physics models or cuts.

Energy tuning

Agreement within error bars, no substantial dependence on physics models or cuts.

QGSP_BIC depends on the step limiter, the others do not.

Energy tuning – calculation times

- Physics lists:
 - QGSP_BIC_EMY: factor 1.2/1.5 faster than QGSP_BIC_HP_EMZ
 - QGSP_BIC_EMZ: factor1.0/1.1 faster than QGSP_BIC_HP_EMZ
- Cuts in phantom/range shifter & cuts in world
 - 1 mm & 10 mm vs 0.1 mm & 1 mm: factor 5.3-7.2
- Step limiter: Factor 4.5-5.9

How do these Geant4 settings influence...

- ... the agreement to commissioning measurements?
 - Depth dose curves of single energy proton spots in a water tank
 - Beam sizes in air after the range shifter
- ... the agreement to patient specific quality assurance measurements?
 - Patient fields simulated in a solid water phantom

Picture: C. Winterhalter, ETH Diss 25698

Figure courtesy: P. Sitch

Beam sizes in air

Energy = 150 MeV

Beam sizes in air

Energy = 150 MeV

Beam size slightly underestimated by QGSP_BIC_EMY compared to measurements and compared to QGSP_BIC_EMZ/ QGSP_BIC_HP_EMZ.

How do these Geant4 settings influence...

- ... the agreement to commissioning measurements?
 - Depth dose curves of single energy proton spots in a water tank
 - Beam sizes in air after the range shifter

Picture: C. Winterhalter, ETH Diss 25698

- ... the agreement to patient specific quality assurance measurements?
 - Patient fields simulated in a solid water phantom

Figure courtesy: P. Sitch

-0.5 -1 1 0.5

2 example fields

b)

NHS

The Christie

[% of 1.8Gy]

a)

40

MANCHESTER

The University of Manchester

Comparison to solid water measurements

34 fields, 200 measurements:

QGSP_BIC_EMZ (small cuts): 96.9 %, 253 CPUh/field (0.6% uncertainty) QGSP_BIC_EMZ (large cuts): 97.0%, 54 CPUh/field (0.6% uncertainty) QGSP_BIC_EMY (large cuts): 97.1%, 46 CPUh/field (0.6% uncertainty)

Comparison to solid water measurements

34 fields, 74 measurements:

QGSP_BIC_EMZ (small cuts): -1.2%, 253 CPUh/field (0.6% uncertainty) QGSP_BIC_EMZ (large cuts): -0.9%, 54 CPUh/field (0.6% uncertainty) QGSP_BIC_EMY (large cuts): -1.0%, 46 CPUh/field (0.6% uncertainty)

Dose diff.

-1

[% of

1.8Gy]

Dose in the patient CT

Dose, QGSP_BIC_EMZ (0.1mm, 1mm) Dose difference, QGSP_BIC_HP_EMZ (0.1mm, 1mm) -QGSP_BIC_EMZ (0.1mm, 1mm)

Dose difference, QGSP_BIC_EMY (0.1mm, 1mm) -QGSP_BIC_EMZ (0.1mm, 1mm) Dose difference, QGSP_BIC_EMZ (1mm, 10mm) -QGSP_BIC_EMZ (0.1mm, 1mm)

GEANT 4 settings for proton therapy

- Physics lists
 - QGSP_BIC
 - QGSP_BIC_EMY
 - QGSP_BIC_EMZ
 - QGSP_BIC_HP_EMZ

- Cuts in phantom/range shifter & cuts in world
 - 1 mm & 10 mm (large)
 - 0.1 mm & 1 mm (small)

• Step limiter

More

GEANT 4 settings for proton therapy

- Physics lists
 - QGSP_BIC depends on step limiter accurate
 - QGSP_BIC_EMY
 - QGSP_BIC_EMZ
 - QGSP_BIC_HP_EMZ no change of dose in target region
- Cuts in phantom/range shifter & cuts in world
 - 1 mm & 10 mm (large)
 - 0.1 mm & 1 mm (small)

Faster

• Step limiter - default

Acknowledgements

- Funding:
 - Science and Technology Facilities Council (STFC) Advanced Radiotherapy Network, grant number ST/N002423/1,
 - Engineering and Physical Sciences Council [EP/R023220/1],
 - NIHR Manchester Biomedical Research Council.
- GATE/GATE-RTion/GEANT4 community: D. Boersma, A. Elia, L. Grevillot, S. Guatelli, L. Maigne, V. Ivantchenko, A. Resch, D. Sarrut, M. Vidal.
- Precise & The Christie:

K. Kirkby, R. Mackay, P. Sitch, M. Taylor.

