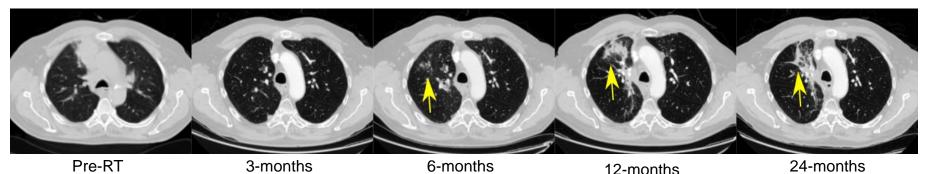
CENTRE FOR MEDICAL IMAGE COMPUTING DEPARTMENT OF MEDICAL PHYSICS & BIOMEDICAL ENGINEERING

Image analysis for lung radiotherapy toxicity

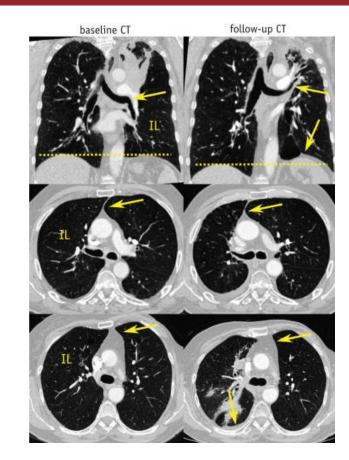
Catarina Veiga RAEng Research Fellow



6th Annual Loma Linda University Algorithm Workshop 22nd July 2020

RILD is a common unwanted side effect of radical radiotherapy that leads to loss of quality of life in survivors [1]

- Acute (pneumonitis, <6 months) vs chronic (fibrosis >12months)
- Distinction between pneumonitis and fibrosis is often unclear clinically
- RILD is visible on CT imaging, bringing an opportunity for *quantification*



[1] Lopes Guerra et al, Int J Radiat Oncol Biol Phys 2012 83(4):e537-543

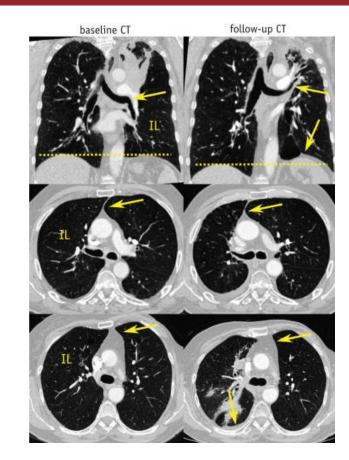
Lung toxicity is reported using RTOG/EORTC and CTCAE scoring systems

- Radiological component focused on subjective assessment of parenchymal change
- At 12-months parenchymal, volume reduction and pleural changes are common [2]
- Variability in reporting according to system used
 [3]
- Need for detailed and objective scoring systems

[2] Veiga et al, Radiother Oncol 2018 126(2):300-306[3] Simone II, Semin Radiat Oncol 2017 27(4):370-377

RTOG/EORTC Late Radiation Morbidity Scoring Schema

Common Terminology Criteria for Adverse Events (CTCAE) v4.0


	Grade 1	Grade 2	Grade 3		Grade 1	Grade 2	Grade 3	Grade 4
Lung radiographic appearances	Slight	Patchy	Dense	Radiographic pulmonary fibrosis volume	<25%	25 - 50%	>50 - 75%	>75% + severe honeycombing

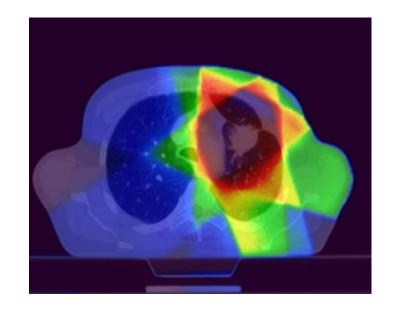
[4] Veiga et al, ASTRO 2018 Annual Meeting

Lung toxicity is reported using RTOG/EORTC and CTCAE scoring systems

- Radiological component focused on subjective assessment of parenchymal change
- At 12-months parenchymal, volume reduction and pleural changes are common [2]
- Variability in reporting according to system used
 [3]
- Need for detailed and objective scoring systems

[2] Veiga et al, Radiother Oncol 2018 126(2):300-306[3] Simone II, Semin Radiat Oncol 2017 27(4):370-377

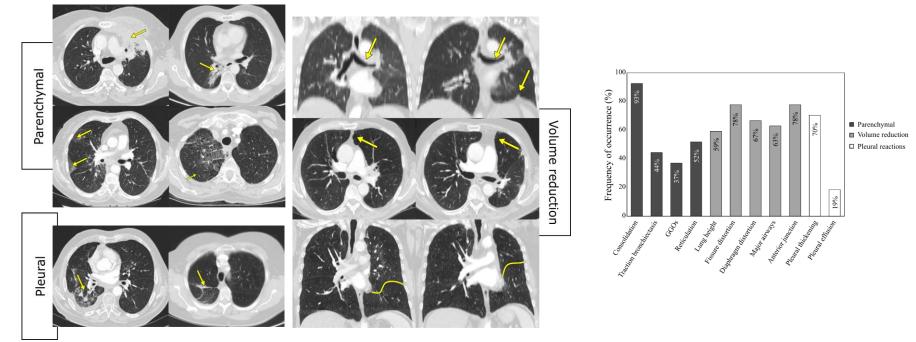
□ What are the common radiological findings of RILD?


- □ Can we use serial CT imaging to quantify RILD?
- □ How does radiological RILD evolve post-RT?
- Can we link radiological RILD to dosimetry and clinical endpoints?

IDEAL CRT trial cohort [5]

- Stage I/II multicenter trial of stage II-III nonsmall cell lung cancer (NSCLC)
- N = 120
- Isotoxic chemoradiation
- Most plans conventional (88%)
- 63-73Gy RT, 30 fractions, over 5 or 6 weeks
- Lung EQD2 mean dose of 18.2Gy
- OS = 36.9months (6-week protocol)
- CT images and clinical tests collected
 - 3, 6, 12 and 24-months post-RT

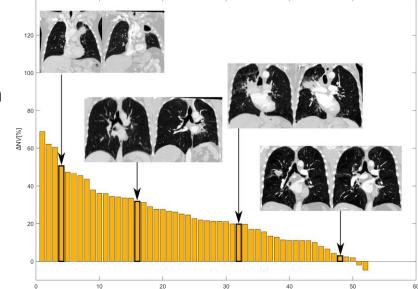
[5] Landau et al, Int J Radiat Oncol Biol Phys 2016 95(5):1367-1377

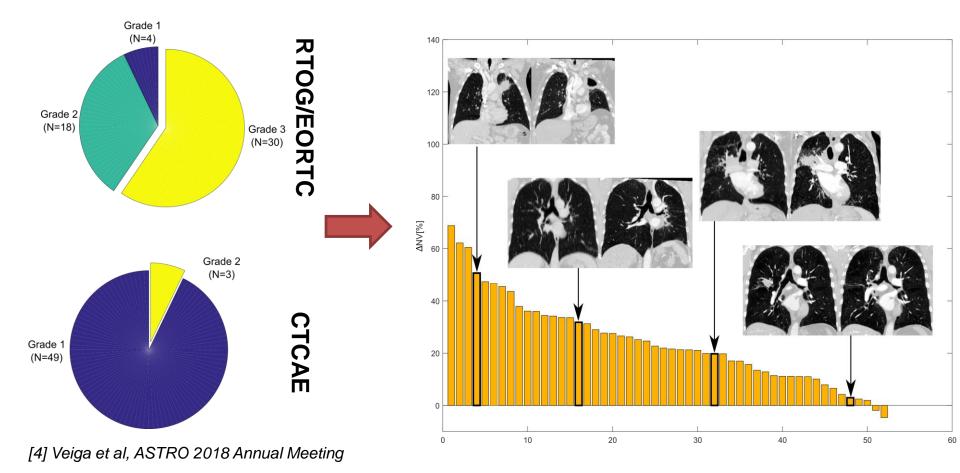


Radiological findings of RILD

N=33 CT scans pre-RT and 12-months post-RT reviewed by a multidisciplinary team Categorised findings into 3 main categories.

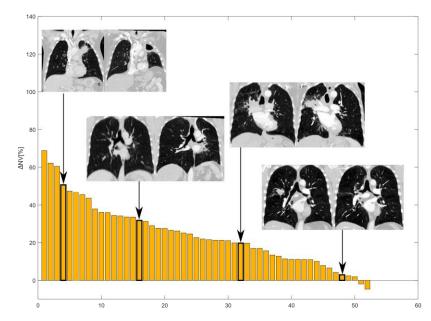
Radiological change was present in all subjects (at least 2 out of 3 categories)

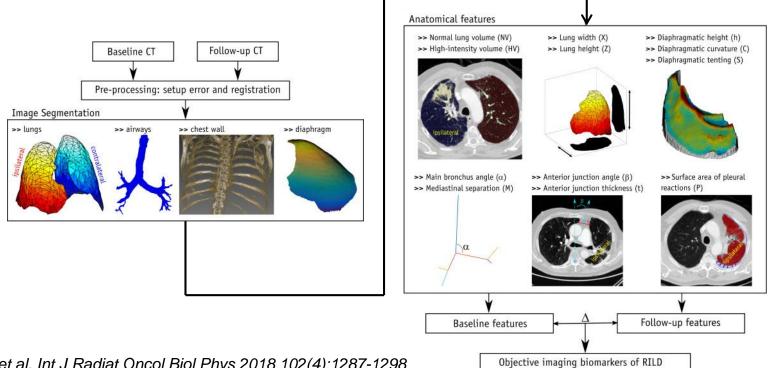



[2] Veiga et al, Radiother Oncol 2018 126(2):300-306

CT-based biomarkers of RILD

Developed a set of objective CT-based biomarkers to quantify RILD [5]

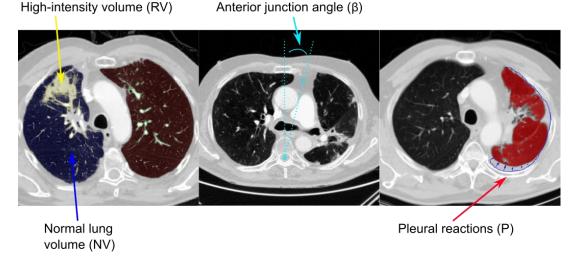

- Measures of parenchymal, volume reduction and pleural change
- Objective and continuous measures
- Interpretable (not abstract)
- But not easily quantifiable by human observers


Applications:

- Facilitate correlation with clinical endpoints
- Development of objective scoring system of RILD
- Understanding how RILD appears and evolves following RT

Implementation details

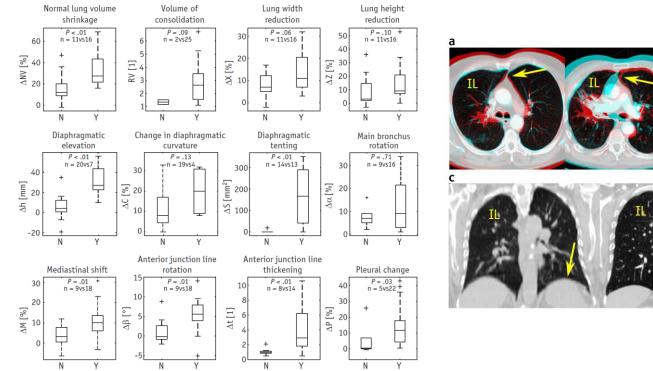
- Semi-automated pipelines implemented in MATLAB
- Segmentations visually assessed and edited if needed.
- 12 measures proposed


[5] Veiga et al, Int J Radiat Oncol Biol Phys 2018 102(4):1287-1298

Selected imaging biomarkers

- Volume of consolidation (RV)
- Pleural change (ΔP)
- Normal lung volume shrinkage (ΔNV) lung volume loss
- Anterior junction line rotation ($\Delta\beta$) _____ anatomical distortions

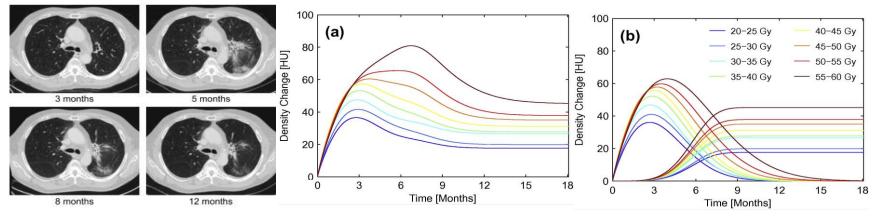
provide complementary information:


- parenchymal change
- pleural effusion/thickening

[5] Veiga et al. Int J Radiat Oncol Biol Phys 2018 102(4):1287-1298

Evaluation

- Comparison with expert assessment
- Critical assessment: variability in scans acquisition and segmentations

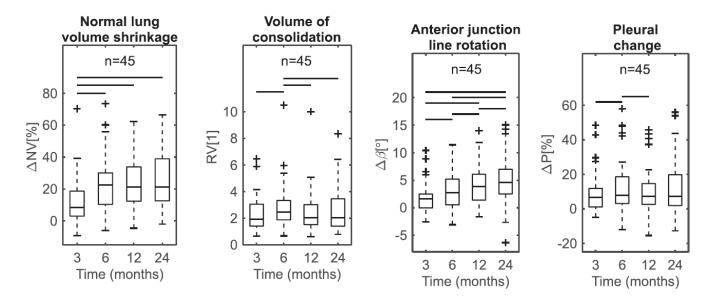


[5] Veiga et al, Int J Radiat Oncol Biol Phys 2018 102(4):1287-1298

b 40 [mm] 4∆ 0 0 -20 TN FP+FN TP

Objective imaging biomarkers versus qualitative assessment (Y/N)

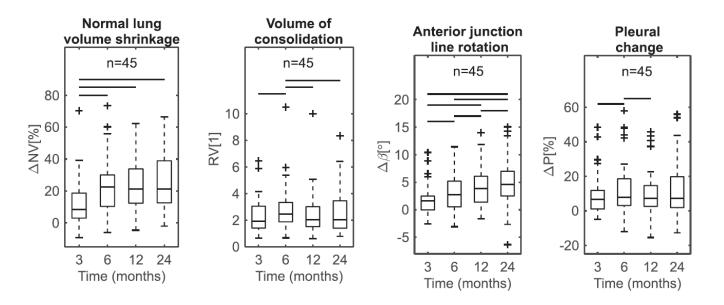
Evolution of RILD on CT imaging and PFTs


RILD has a time/dose evolution [6, 7]

- Evolution of local CT density over time (parenchymal change)
- □ Fitted curves of the two-component model:
 - early transient component (skewed bell shape) peaks 3-4months
 - □ late persistent component (sigmoid shape) stabilize >12months

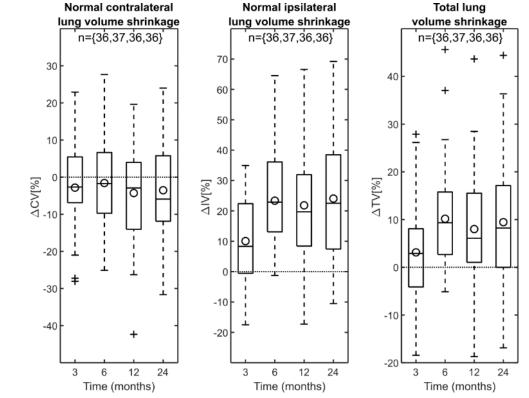
[6] Bernchou et al, Radiother Oncol 2013 109(1):89-94[7] Veiga et al, Radiother Oncol 2020 148:89-96

N=45 subjects for which biomarkers were calculated at 3, 6, 12, and 24-months Overall population findings:


- Radiological findings have a temporal dependency
- Findings present from 3-months
- Largest variation occurring from 3 to 6-months

[7] Veiga et al, Radiother Oncol 2020 148:89-96

Overall population findings:


- Parenchymal change peaks at 6-months
- Lung volume and anatomical distortions progressively worsen up to 24-months
- Pleural change variable across the patient group

[7] Veiga et al, Radiother Oncol 2020 148:89-96

Overall population findings:

Total lung volume loss with inflation of the contralateral lung

[7] Veiga et al, Radiother Oncol 2020 148:89-96

Overall findings:

- Correlation between radiological findings and dosimetry/pulmonary function tests
- Modest but significant correlations with lung volume loss

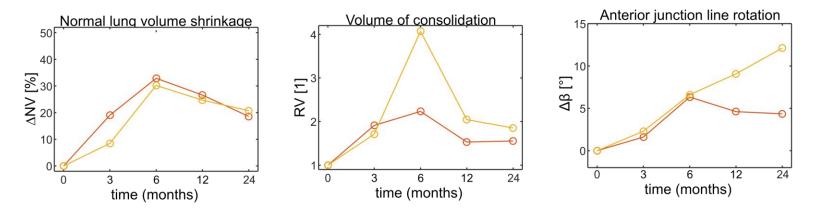
Correlation coefficient between radiological findings and mean lung dose (MLD)

3-months	- 0.30326	0.30239	0.12427	0.089064	0.269	0.46353	0.13962	-0.041151	-0.016186	0.22353	-0.04061	0.059451	0.23443	0.43062	0.38188 —
6-months	— 0.38338	0.15018	0.19221	0.14299	0.41096	0.37735	0.18817	-0.11847	0.23267	0.25123	-0.0084611	0.073177	0.20853	0.38636	0.35841 —
12-months	— 0.36629	0.075689	0.22101	0.040353	0.25393	0.089287	-0.006078	0.1845	0.15213	0.28738	0.14023	0.077571	0.12395	0.30271	0.25277 —
24-months	- 0.40308	0.22787	0.24588	0.10069	0.20969	0.33471	-0.060612 	0.22593	0.14532	0.21896	-0.084678 	0.20886	-0.0071017	0.39653	0.23893 — I
	ΔNV	RV	ΔX	ΔZ	Δh	ΔC	ΔS	Δα	ΔM	Δβ	Δt	ΔP	ΔCV	ΔIV	ΔTV

	Correlation coefficient between radiological findings and Forced Vital Capacity (FVC) - pooled data														
All	-0.22263	-0.20485	-0.24531	-0.12932	-0.22404	0.037884	-0.077519	-0.037341	-0.22827	-0.14106	-0.082371	-0.29407	-0.23914	-0.46946	-0.42898 —
	ΔNV	RV	ΔX	ΔZ	Δh	ΔC	ΔS	Δα	ΔM	Δβ	Δt	ΔP	ΔCV	ΔIV	ΔTV

[7] Veiga et al, Radiother Oncol 2020 148:89-96

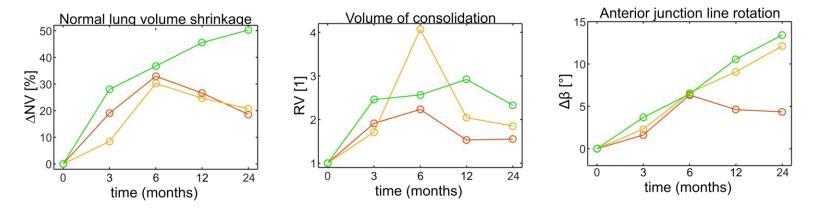
Considerable variation between patients: severity and temporal patterns


Reversible parenchymal change without progressive anatomical distortions

BIOMARKERS

Considerable variation between patients: severity and temporal patterns Reversible parenchymal change with progressive anatomical distortions

BIOMARKERS


PRE-RT 3-MONTHS 6-MONTHS 12-MONTHS 24-MONTHS

[7] Veiga et al, Radiother Oncol 2020 148:89-96

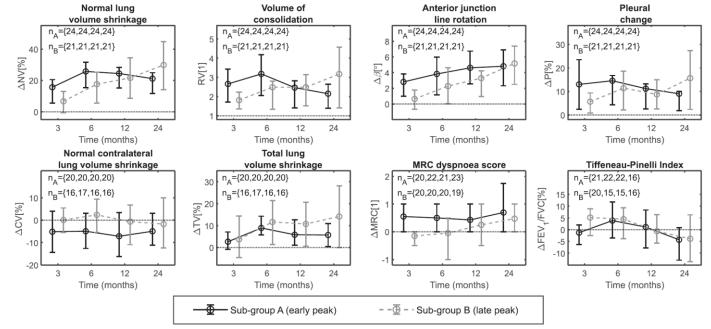
Considerable variation between patients: severity and temporal patterns

□ Irreversible parenchymal change with progressive volume loss and anatomical distortions

BIOMARKERS

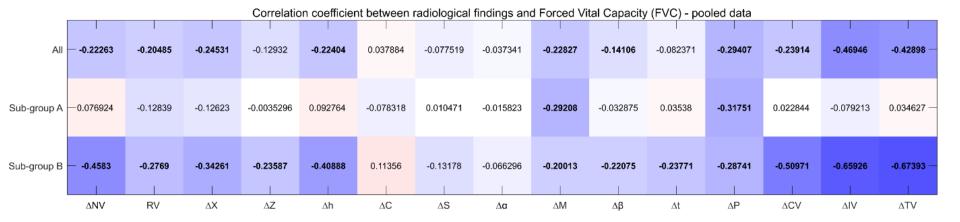
PRE-RT

6-MONTHS



[7] Veiga et al, Radiother Oncol 2020 148:89-96

Identify two sub-groups based purely on radiological findings


- The sub-grouping differentiated subjects with predominantly acute inflammatory reactions versus patients with mostly persistent fibrotic RILD
- Majority of subjects progressed to develop late RILD when imaging findings were absent or mild in the early phase

[7] Veiga et al, Radiother Oncol 2020 148:89-96

Identify two sub-groups based purely on radiological findings

- Differing functional patterns (PFTs) in the radiologically-stratified sub-groups
- Patients in the early change group had better pulmonary function pre-RT.

[7] Veiga et al, Radiother Oncol 2020 148:89-96

Image-based biomarkers provide quantitative information on the evolution of RILD

- The evolution of RILD is not easily quantifiable by human observers
- □ Findings with high level of detail but interpretable

We can identify patterns of radiological evolution of RILD

- early acute inflammation phase (3-6 months), characterised by reversible parenchymal change
- chronic inflammation (6-24 months), characterised by irreversible scarring, progressive lung volume loss and anatomical distortions

Interpatient variability seems to indicate sub-groups for the evolution of RILD

Subjects with better pre-RT PFTs had a more severe early phase

UC

Small number of subjects included

Findings are exploratory and have to be validated in larger cohorts

Uncertainties in the biomarkers

Caused by variation in inhalation level, segmentation, scanner acquisition parameters, resolution, patient positioning …

Confounding factors

- Patient-specific factors (e.g.: age, baseline pulmonary function, smoking history, ...)
- □ Treatment-specific factors (e.g: RT modality, concurrent chemotherapy, ...)
- Other pathologies with similar radiological patterns

Acknowledgments

Jamie McClelland David Landau Dave Hawkes Anand Devaraj Joseph Jacob

Adam Szmul Edward Chandy Natalie Yip Jared White **UCL** Trials Unit

Cancer Research UK Royal Academy of Engineering

