Particle versus photon imaging for proton radiotherapy - an experimental comparison

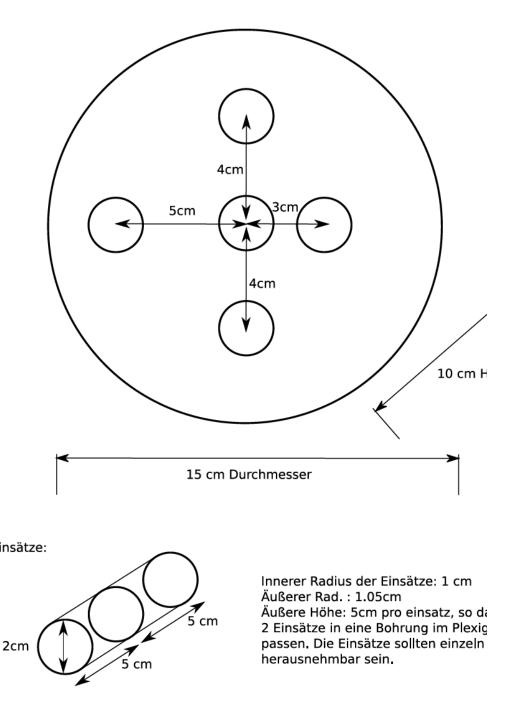
<u>Esther Bär</u>^{*1}, Lennart Volz^{*2}, Charles-Antoine Collins-Fekete^{*1}, Armin Runz², Stephan Brons², Reinhard Schulte³, Joao Seco²

1- University College London, London, UK

- 2 German Cancer Research Center, Heidelberg, Germany
 - 3 Loma Linda University, Loma Linda, CA, USA
 - * The first three authors contributed equally.

- Photon CT
 - 1) Single-energy CT
 - 2) Dual-energy CT
- Particle CT
 - 3) Proton CT
 - 4) Helium CT

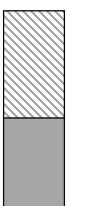
- 1) Design a **tissue phantom**, collect and prepare tissue samples.
- 2) Perform **reference RSP** measurements.
- 3) Photon CT imaging: Collect **SECT and DECT** images, estimate the RSPs and compare to reference RSP.
- 4) Particle CT imaging: Collect **proton and helium CT** images, compare RSPs to photon CT and reference RSP.


All in one

day!!

1) Design a **tissue phantom**, collect and prepare tissue samples.

- 2) Perform reference RSP measurements.
- Photon CT imaging: Collect SECT and DECT images, estimate the RSPs and compare to reference RSP.
- 4) Particle CT imaging: Collect **proton and helium CT** images, compare RSPs to photon CT and reference RSP.



Tissue phantom design

- PMMA cylinder
 - 15 cm diameter
 - 10 cm high
 - Cylindrical holes to insert 3D printed containers
 - Holds 10 containers in one scan

Sample 1

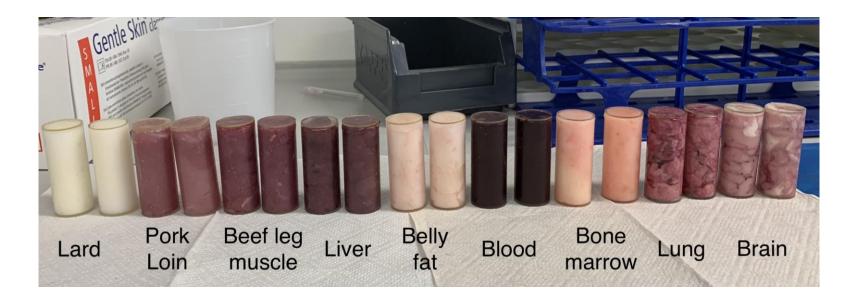
Sample 2

Tissue phantom design

- PMMA cylinder
 - 15 cm diameter
 - 10 cm high
 - Cylindrical holes to insert 3D printed containers
 - Holds 10 containers in one scan

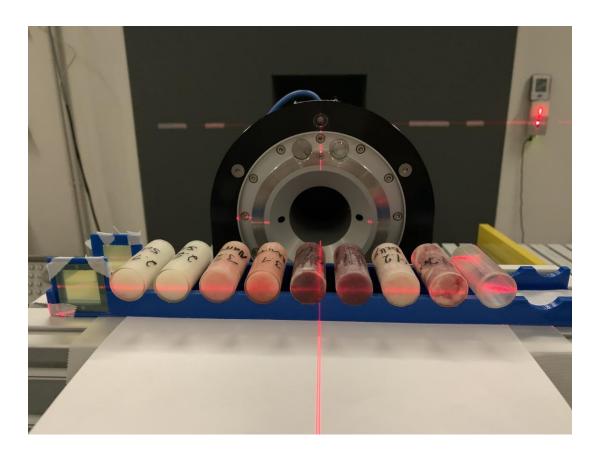
Tissue sample preparation

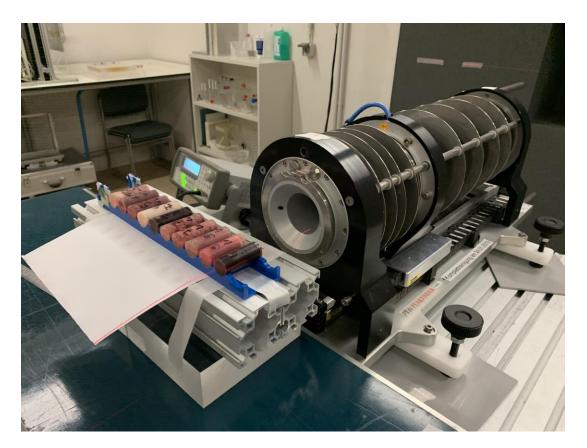
- 17 porcine and bovine samples including:
 - Lung
 - Fat
 - Marrow
 - Blood
 - Muscle
 - Brain
 - Kidney
 - Liver
 - Trabecular bone
 - Cortical bone

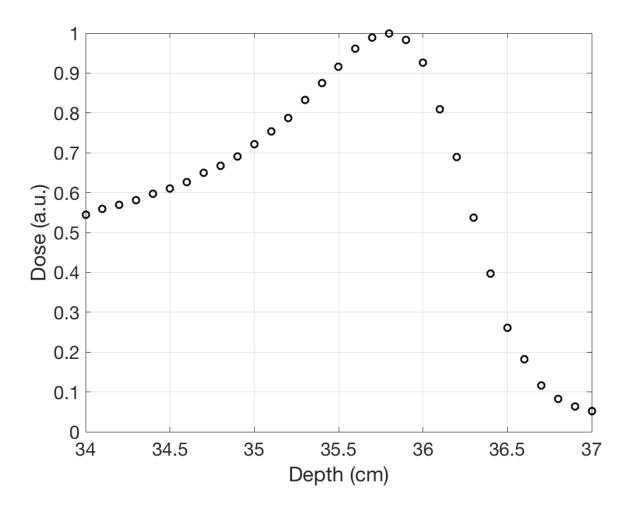

Tissue sample preparation

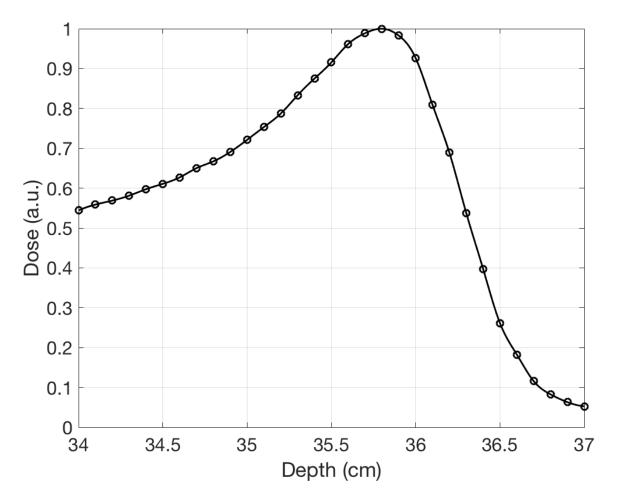
- 17 porcine and bovine samples including:
 - Lung
 - Fat
 - Marrow
 - Blood
 - Muscle
 - Brain
 - Kidney
 - Liver
 - Trabecular bone
 - Cortical bone

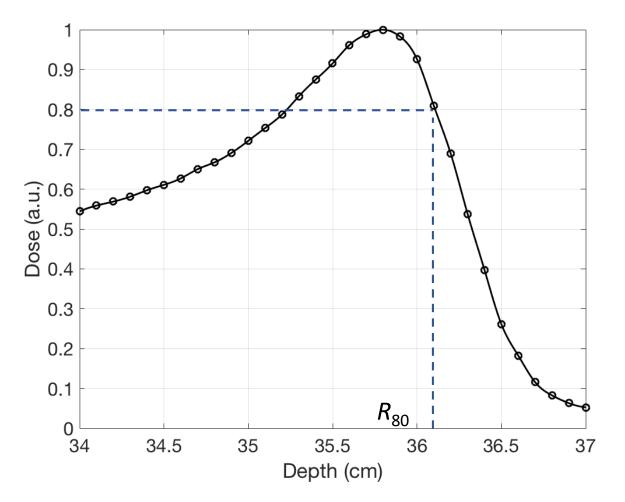
Tissue sample preparation


- 17 porcine and bovine samples including:
 - Lung
 - Fat
 - Marrow
 - Blood
 - Muscle
 - Brain
 - Kidney
 - Liver
 - Trabecular bone
 - Cortical bone


- 1) Design a **tissue phantom**, collect and prepare tissue samples.
- 2) Perform **reference RSP** measurements.
- 3) Photon CT imaging: Collect **SECT and DECT** images, estimate the RSPs and compare to reference RSP.
- 4) Particle CT imaging: Collect **proton and helium CT** images, compare RSPs to photon CT and reference RSP.

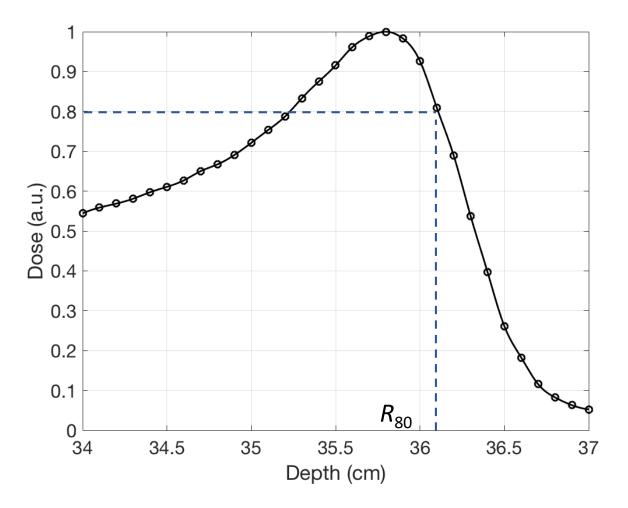

- Samples in 3D printed containers
 - Placed on a 3D printed holder and a translational stage


- Samples in 3D printed containers
 - Placed on a 3D printed holder and a translational stage
- PTW PeakFinder
 - Adjustable water column for peak detection measurements
- Clinical carbon beam
 - Narrow peak, low scattering


 For each tissue sample and empty container: measure a depth dose curve


- For each tissue sample and empty container: measure a depth dose curve
- Interpolate to find the 80% distal fall-off

- For each tissue sample and empty container: measure a depth dose curve
- Interpolate to find the 80% distal fall-off



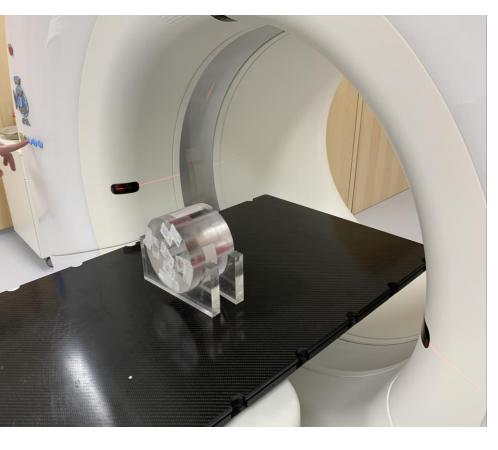
- For each tissue sample and empty container: measure a depth dose curve
- Interpolate to find the 80% distal fall-off

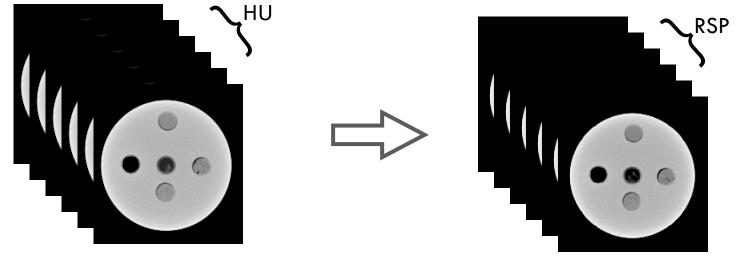
$$WET_{sample} = R_{80,empty} - R_{80,sample}$$

- For each tissue sample and empty container: measure a depth dose curve
- Interpolate to find the 80% distal fall-off

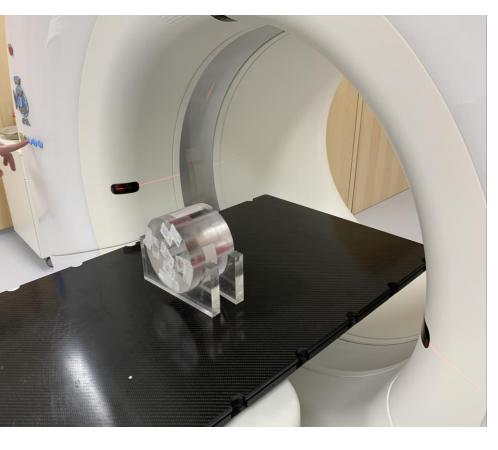
$$WET_{sample} = R_{80,empty} - R_{80,sample}$$

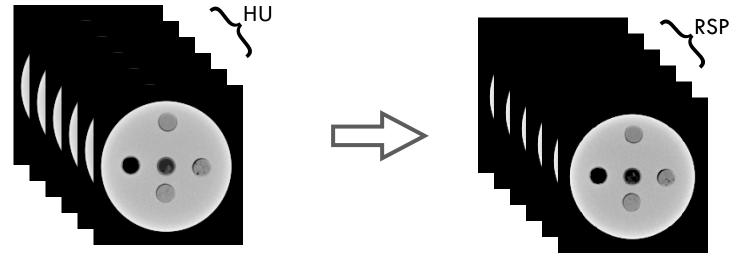
$$RSP_{sample, ref} = \frac{WET_{sample}}{t}$$



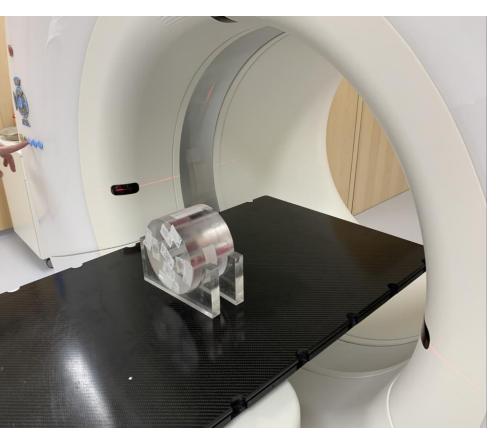

Tissue	$\mathrm{RSP}_{\mathrm{ref}}$
Lung	0.90 ± 0.04
Belly fat	1.00 ± 0.00
Back fat	0.97 ± 0.01
Marrow	0.93 ± 0.02
Water	1.00 ± 0.00
Blood	1.05 ± 0.00
Cheek muscle	1.05 ± 0.01
Loin 1	1.06 ± 0.00
Loin 2	1.06 ± 0.00
Leg muscle	1.05 ± 0.01
Brain	1.04 ± 0.00
Kidney 1	1.05 ± 0.00
Kidney 2	1.04 ± 0.01
Liver 1	1.06 ± 0.00
Liver 2	1.06 ± 0.00
Trabecular bone	1.19 ± 0.06
Cortical bone	1.78 ± 0.03
Mean error	—
Mean absolute error	—
Root mean square error	_

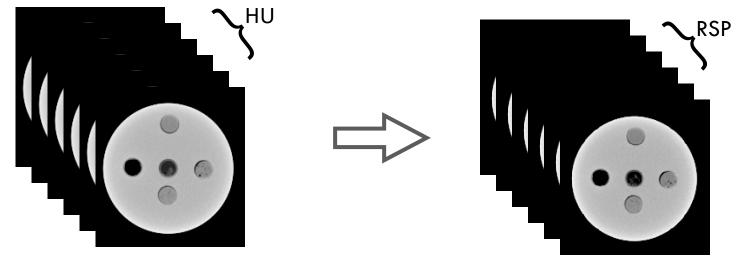
- 1) Design a **tissue phantom**, collect and prepare tissue samples.
- 2) Perform **reference RSP** measurements.
- 3) Photon CT imaging: Collect **SECT and DECT** images, estimate the RSPs and compare to reference RSP.
- 4) Particle CT imaging: Collect **proton and helium CT** images, compare RSPs to photon CT and reference RSP.





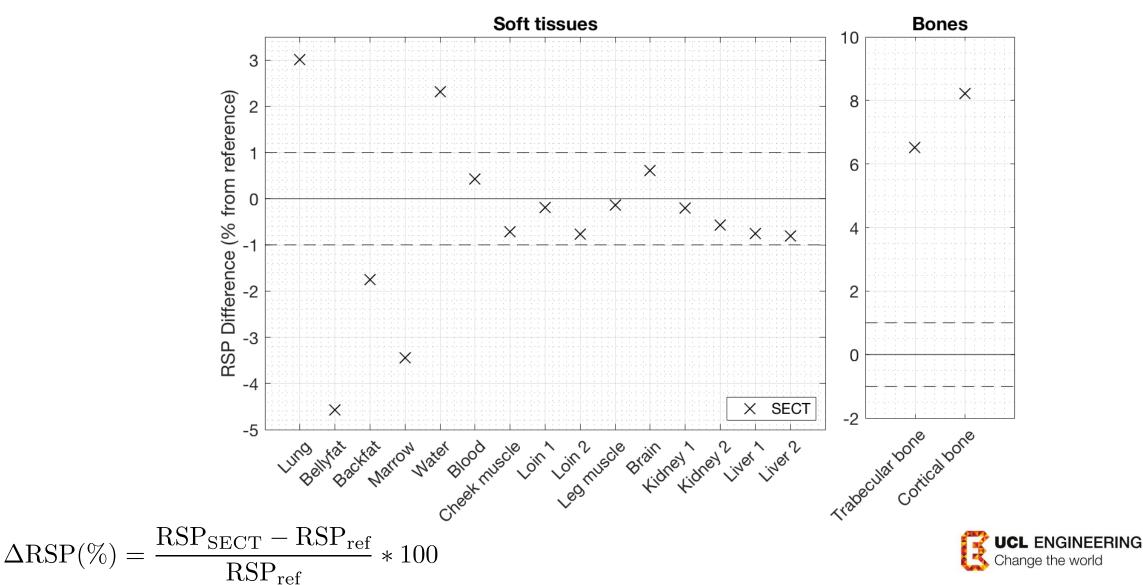
Calibration


- Schneider, U., Pedroni, E. and Lomax, A., 1996. The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine & Biology, 41(1), p.111.
- Calibration phantom: Gammex RMI 467 electron density phantom
- Reference tissues: White and Woodard



Calibration

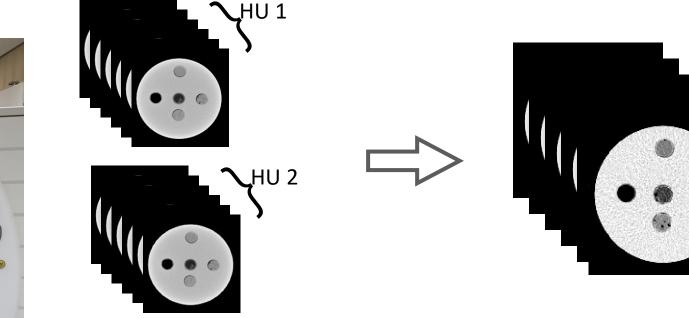
- Schneider, U., Pedroni, E. and Lomax, A., 1996. The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine & Biology, 41(1), p.111.
- Calibration phantom: Gammex RMI 467 electron density phantom
- Reference tissues: White and Woodard
- Measure average RSP per sample in VOIs: RSP_{SECT}


 $\frac{\mathrm{RSP}_{\mathrm{SECT}} - \mathrm{RSP}_{\mathrm{ref}}}{\mathrm{RSP}_{\mathrm{ref}}} * 100$ $\Delta RSP(\%) =$

Calibration

- Schneider, U., Pedroni, E. and Lomax, A., 1996. The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine & Biology, 41(1), p.111.
- Calibration phantom: Gammex RMI 467 electron density phantom
- Reference tissues: White and Woodard
- Measure average RSP per sample in VOIs: RSP_{SECT}

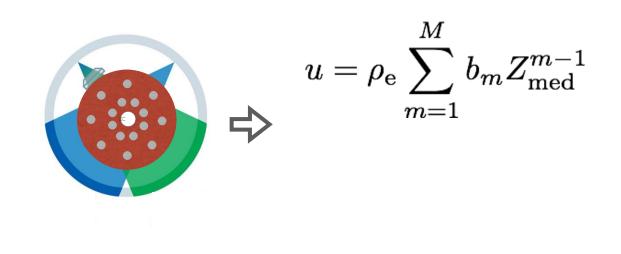
SECT-estimated RSP errors



SECT-estimated RSP errors

Belly fat 1.00 ± 0.00 -4.57 ± 3.35 Back fat 0.97 ± 0.01 -1.75 ± 1.97 Marrow 0.93 ± 0.02 -3.44 ± 5.78 Water 1.00 ± 0.00 2.32 ± 0.31 Blood 1.05 ± 0.00 0.43 ± 0.29 Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.00 -0.75 ± 4.61 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31			
Lung 0.90 ± 0.04 3.01 ± 11.00 Belly fat 1.00 ± 0.00 -4.57 ± 3.35 Back fat 0.97 ± 0.01 -1.75 ± 1.97 Marrow 0.93 ± 0.02 -3.44 ± 5.78 Water 1.00 ± 0.00 2.32 ± 0.31 Blood 1.05 ± 0.00 0.43 ± 0.29 Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.00 -0.75 ± 4.61 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31			
Belly fat 1.00 ± 0.00 -4.57 ± 3.35 Back fat 0.97 ± 0.01 -1.75 ± 1.97 Marrow 0.93 ± 0.02 -3.44 ± 5.78 Water 1.00 ± 0.00 2.32 ± 0.31 Blood 1.05 ± 0.00 0.43 ± 0.29 Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.00 -0.75 ± 4.61 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31	Tissue	$\mathrm{RSP}_{\mathrm{ref}}$	SECT
Back fat 0.97 ± 0.01 -1.75 ± 1.97 Marrow 0.93 ± 0.02 -3.44 ± 5.78 Water 1.00 ± 0.00 2.32 ± 0.31 Blood 1.05 ± 0.00 0.43 ± 0.29 Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.00 -0.75 ± 4.61 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31	Lung	0.90 ± 0.04	3.01 ± 11.06
Marrow 0.93 ± 0.02 -3.44 ± 5.78 Water 1.00 ± 0.00 2.32 ± 0.31 Blood 1.05 ± 0.00 0.43 ± 0.29 Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Belly fat	1.00 ± 0.00	$-4.57 \pm 3.35^*$
Water 1.00 ± 0.00 2.32 ± 0.31 Blood 1.05 ± 0.00 0.43 ± 0.29 Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Back fat	0.97 ± 0.01	-1.75 ± 1.97
Blood 1.05 ± 0.00 0.43 ± 0.29 Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Marrow	0.93 ± 0.02	-3.44 ± 5.78
Cheek muscle 1.05 ± 0.01 -0.72 ± 1.49 Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Water	1.00 ± 0.00	2.32 ± 0.31
Loin 1 1.06 ± 0.00 -0.20 ± 2.18 Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Blood	1.05 ± 0.00	0.43 ± 0.29
Loin 2 1.06 ± 0.00 -0.77 ± 1.51 Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Cheek muscle	1.05 ± 0.01	-0.72 ± 1.49
Leg muscle 1.05 ± 0.01 -0.14 ± 1.68 Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Loin 1	1.06 ± 0.00	-0.20 ± 2.18
Brain 1.04 ± 0.00 0.61 ± 0.83 Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Loin 2	1.06 ± 0.00	-0.77 ± 1.51
Kidney 1 1.05 ± 0.00 -0.20 ± 3.25 Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Leg muscle	1.05 ± 0.01	-0.14 ± 1.68
Kidney 2 1.04 ± 0.01 -0.58 ± 4.90 Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Brain	1.04 ± 0.00	0.61 ± 0.83
Liver 1 1.06 ± 0.00 -0.75 ± 4.61 Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Kidney 1	1.05 ± 0.00	-0.20 ± 3.25
Liver 2 1.06 ± 0.00 -0.80 ± 6.31 Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Kidney 2	1.04 ± 0.01	-0.58 ± 4.90
Trabecular bone 1.19 ± 0.06 6.52 ± 6.86	Liver 1	1.06 ± 0.00	-0.75 ± 4.61
	Liver 2	1.06 ± 0.00	-0.80 ± 6.31
Cortical bone $1.78 \pm 0.03 8.22 \pm 5.06^{\circ}$	Trabecular bone	1.19 ± 0.06	6.52 ± 6.86
	Cortical bone	1.78 ± 0.03	$8.22\pm5.06^\dagger$
Mean error $-$ 0.42 \pm 4.53	Mean error	_	$\textbf{0.42} \pm \textbf{4.55}$
Mean absolute error – 2.06	Mean absolute error	—	2.06
Root mean square error-3.10	Root mean square error	_	3.10

 $\Delta RSP(\%) = \frac{RSP_{SECT} - RSP_{ref}}{RSP_{ref}} * 100$

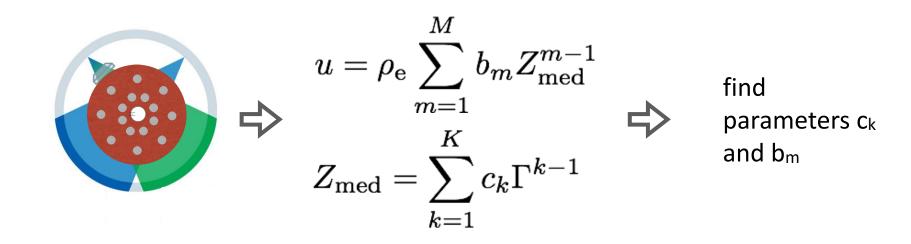


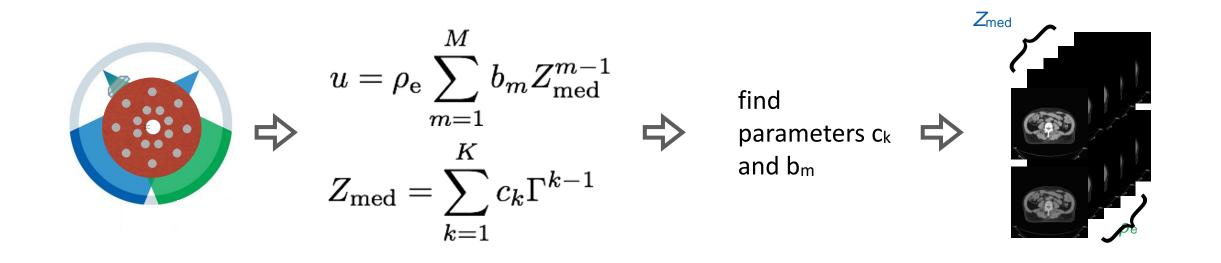
Calibration

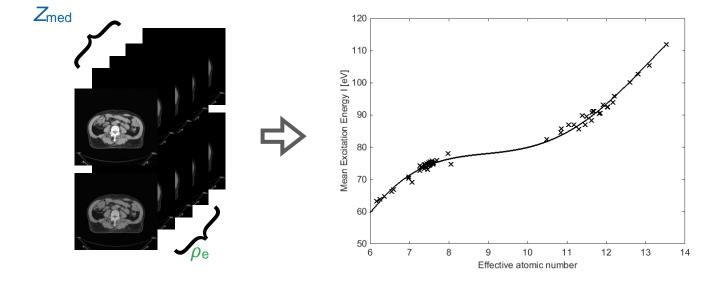
 Bourque, A.E., Carrier, J.F. and Bouchard, H., 2014. A stoichiometric calibration method for dual energy computed tomography. Physics in Medicine & Biology, 59(8), p.2059.

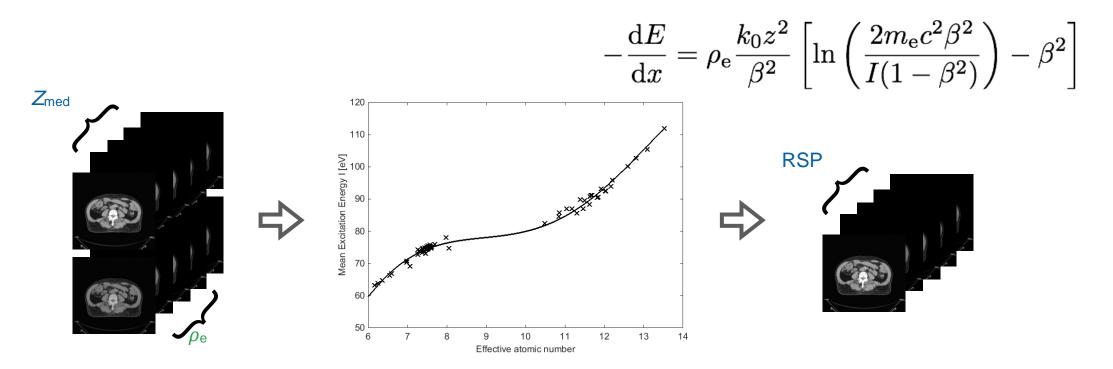
RSP

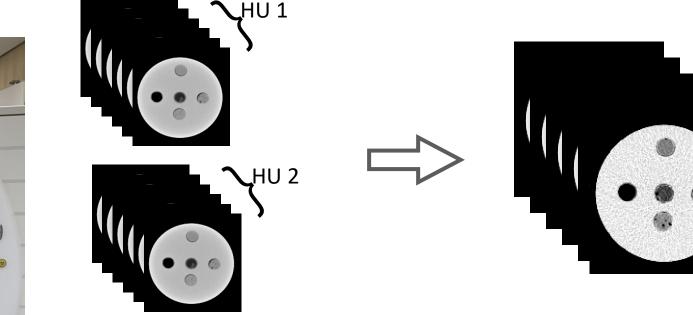
• Parameterize the **CT number** u as a function of Z_{med} and the electron density ρ_{e}




- Parameterize the **CT number** \boldsymbol{u} as a function of Z_{med} and the electron density ρ_{e}
- Parameterize the effective atomic number Z_{med} as a function of the dual energy index Γ

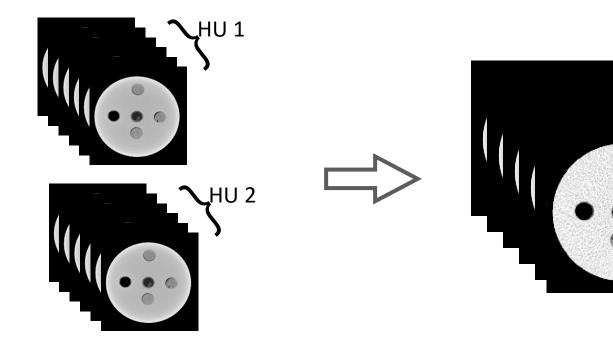

- Parameterize the **CT number** \boldsymbol{u} as a function of Z_{med} and the electron density ρ_{e}
- Parameterize the effective atomic number Z_{med} as a function of the dual energy index Γ
- Calibrate (find parameters ck and bm) using tissue substitutes with known densities and compositions


- Parameterize the **CT number** \boldsymbol{u} as a function of Z_{med} and the electron density ρ_{e}
- Parameterize the effective atomic number Z_{med} as a function of the dual energy index Γ
- Calibrate (find parameters ck and bm) using tissue substitutes with known densities and compositions
- use parameters to find Z_{med} and ρ_e per voxel in a patient scan


• Parameterize the mean excitation energy *I* as a function of *Z*_{med}

- Parameterize the mean excitation energy *I* as a function of *Z*_{med}
- Calculate the **RSP** from *I* and ρ_e per voxel using the **Bethe equation**

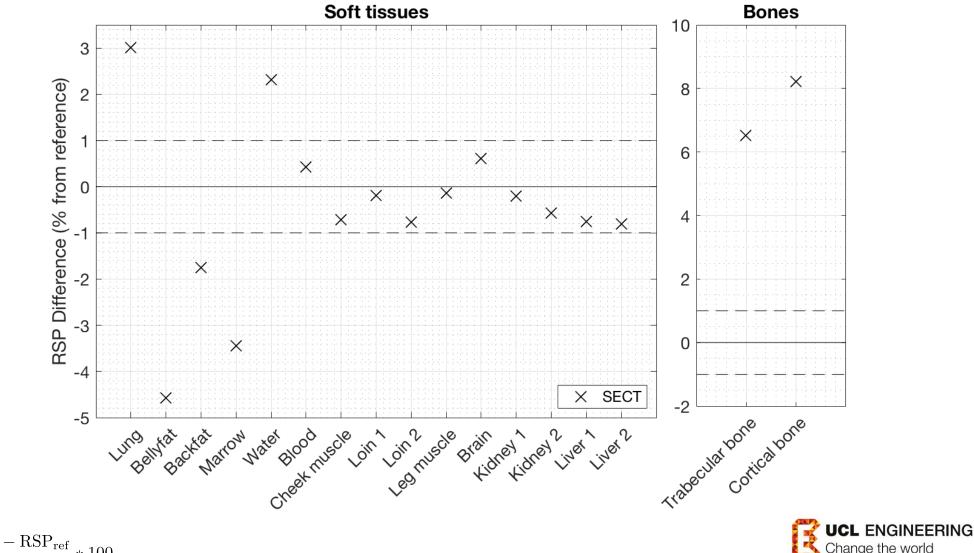
Calibration


 Bourque, A.E., Carrier, J.F. and Bouchard, H., 2014. A stoichiometric calibration method for dual energy computed tomography. Physics in Medicine & Biology, 59(8), p.2059.

RSP

- Calibration phantom: Gammex RMI 467 electron density phantom
- Measure average RSP per sample in VOIs: RSP_{DECT}

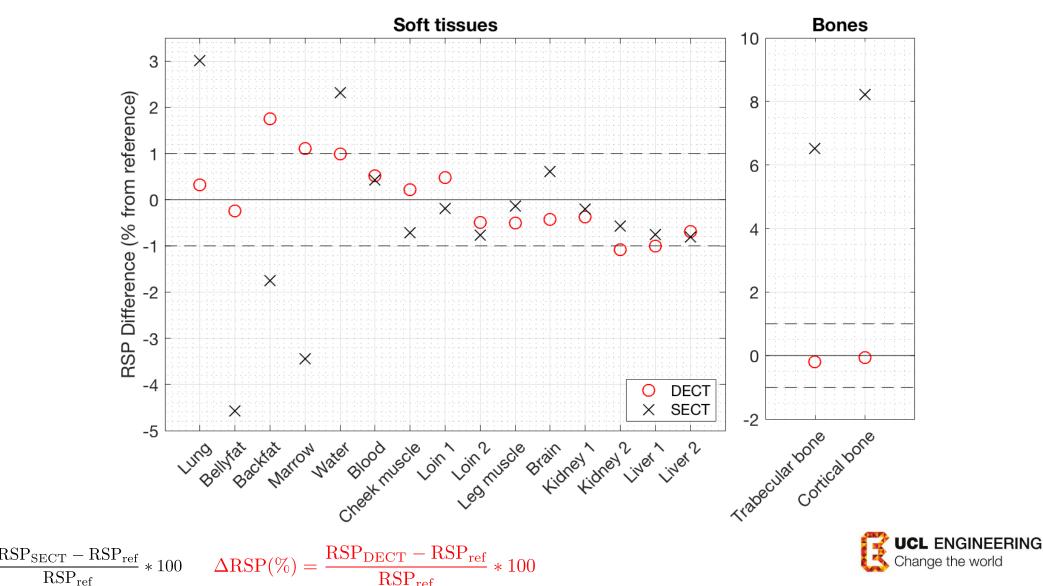
$$\Delta RSP(\%) = \frac{RSP_{DECT} - RSP_{ref}}{RSP_{ref}} * 100$$


Calibration

 Bourque, A.E., Carrier, J.F. and Bouchard, H., 2014. A stoichiometric calibration method for dual energy computed tomography. Physics in Medicine & Biology, 59(8), p.2059.

RSP

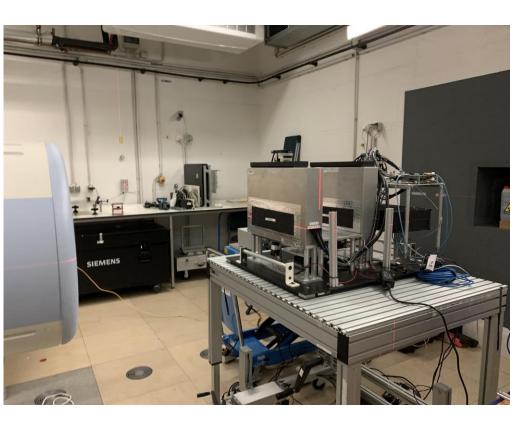
- Calibration phantom: Gammex RMI 467 electron density phantom
- Measure average RSP per sample in VOIs: RSP_{DECT}


SECT-estimated RSP errors

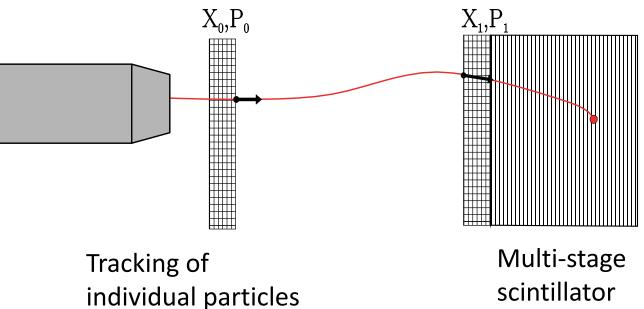
 $\Delta RSP(\%) = \frac{RSP_{SECT} - RSP_{ref}}{RSP_{ref}} * 100$

Photon CT estimated RSP errors

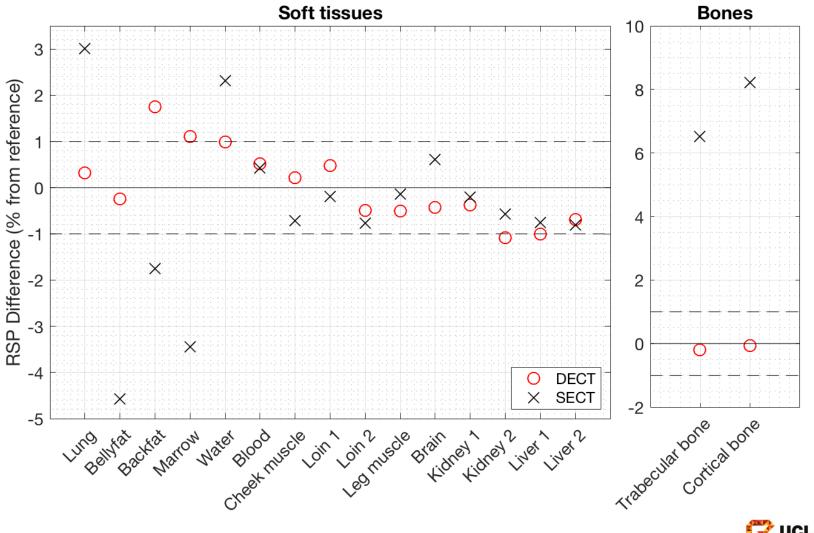
 $\Delta \text{RSP}(\%)$


DECT-estimated RSP errors

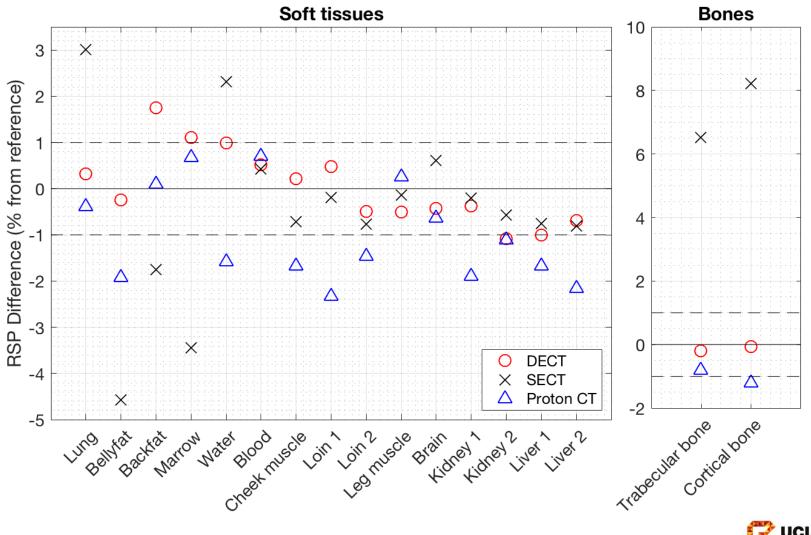
			07 D:fformar and
Tissue	RSP_{ref}	SECT	% Difference DECT
Lung	0.90 ± 0.04	3.01 ± 11.06	0.32 ± 10.87
Belly fat	1.00 ± 0.00	$-4.57 \pm 3.35^*$	-0.24 ± 4.24
Back fat	0.97 ± 0.01	-1.75 ± 1.97	$1.74 \pm 3.30^{\dagger}$
Marrow	0.93 ± 0.02	-3.44 ± 5.78	1.11 ± 7.01
Water	1.00 ± 0.00	2.32 ± 0.31	0.99 ± 2.31
Blood	1.05 ± 0.00	0.43 ± 0.29	0.51 ± 1.94
Cheek muscle	1.05 ± 0.01	-0.72 ± 1.49	0.22 ± 2.96
Loin 1	1.06 ± 0.00	-0.20 ± 2.18	0.47 ± 3.57
Loin 2	1.06 ± 0.00	-0.77 ± 1.51	-0.49 ± 2.78
Leg muscle	1.05 ± 0.01	-0.14 ± 1.68	-0.50 ± 2.78
Brain	1.04 ± 0.00	0.61 ± 0.83	-0.43 ± 2.13
Kidney 1	1.05 ± 0.00	-0.20 ± 3.25	-0.37 ± 3.82
Kidney 2	1.04 ± 0.01	-0.58 ± 4.90	-1.09 \pm 6.27 *
Liver 1	1.06 ± 0.00	-0.75 ± 4.61	-1.01 ± 5.23
Liver 2	1.06 ± 0.00	-0.80 ± 6.31	-0.69 ± 6.90
Trabecular bone	1.19 ± 0.06	6.52 ± 6.86	-0.19 ± 6.61
Cortical bone	1.78 ± 0.03	$8.22\pm5.06^\dagger$	-0.07 ± 4.87
Mean error	—	$\textbf{0.42} \pm \textbf{4.55}$	$\textbf{-0.02} \pm \textbf{5.11}$
Mean absolute error	—	2.06	0.61
Root mean square error	—	3.10	0.75


- 1) Design a **tissue phantom**, collect and prepare tissue samples.
- 2) Perform **reference RSP** measurements.
- 3) Photon CT imaging: Collect **SECT and DECT** images, estimate the RSPs and compare to reference RSP.
- 4) Particle CT imaging: Collect **proton and helium CT** images, compare RSPs to photon CT and reference RSP.

Proton and helium CT collection

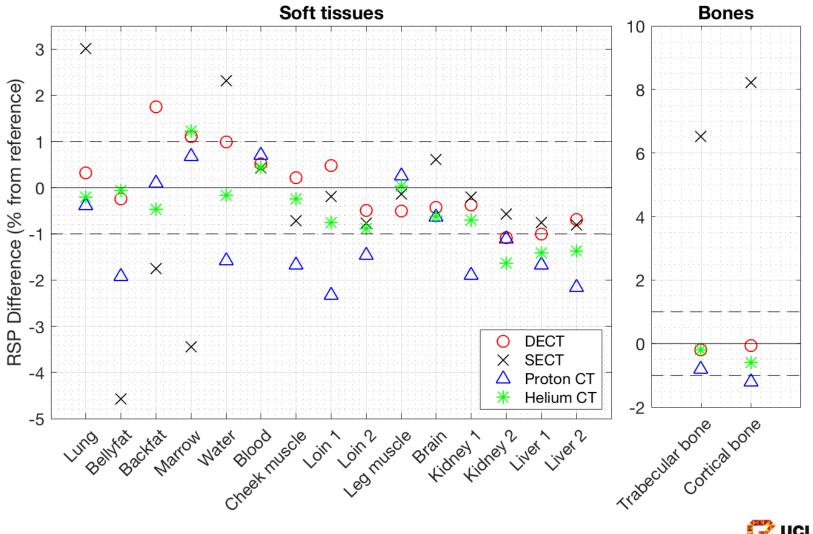

$$\Delta RSP(\%) = \frac{RSP_{pCT} - RSP_{ref}}{RSP_{ref}} * 100$$

- Particle CT directly samples energy loss
- Image blur due to non-linear path of protons
- Helium ions are investigated



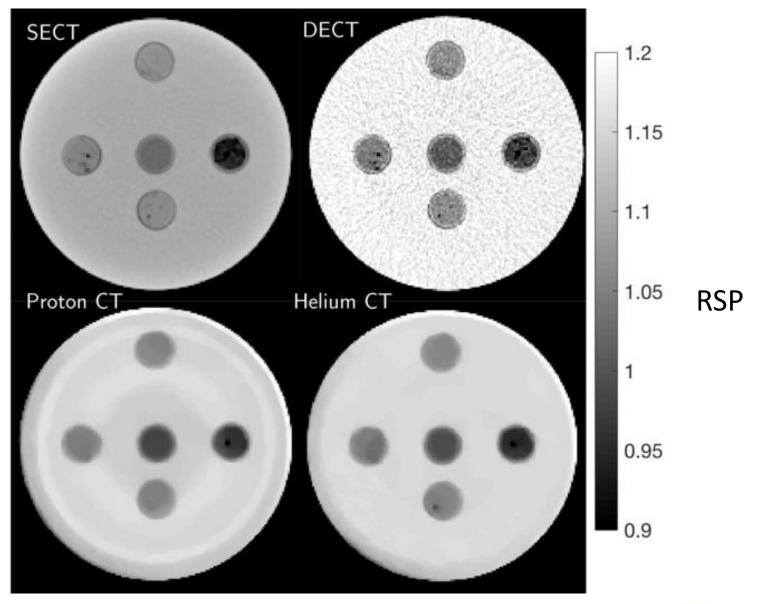
Photon CT estimated RSP errors

Photon CT vs. Proton CT



Proton CT estimated RSP errors

		% Difference to reference		
Tissue	$\mathrm{RSP}_{\mathrm{ref}}$	SECT	DECT	proton CT
Lung	0.90 ± 0.04	3.01 ± 11.06	0.32 ± 10.87	-0.39 ± 6.89
Belly fat	1.00 ± 0.00	$-4.57 \pm 3.35^*$	-0.24 ± 4.24	-1.92 ± 0.83
Back fat	0.97 ± 0.01	-1.75 ± 1.97	$1.74\pm3.30^{\dagger}$	0.10 ± 0.95
Marrow	0.93 ± 0.02	-3.44 ± 5.78	1.11 ± 7.01	0.68 ± 4.23
Water	1.00 ± 0.00	2.32 ± 0.31	0.99 ± 2.31	-1.59 ± 0.21
Blood	1.05 ± 0.00	0.43 ± 0.29	0.51 ± 1.94	$0.70\pm0.29^\dagger$
Cheek muscle	1.05 ± 0.01	-0.72 ± 1.49	0.22 ± 2.96	-1.68 ± 1.12
Loin 1	1.06 ± 0.00	-0.20 ± 2.18	0.47 ± 3.57	$-2.33 \pm 1.01^{*}$
Loin 2	1.06 ± 0.00	-0.77 ± 1.51	-0.49 ± 2.78	-1.47 ± 0.72
Leg muscle	1.05 ± 0.01	-0.14 ± 1.68	-0.50 ± 2.78	0.26 ± 0.95
Brain	1.04 ± 0.00	0.61 ± 0.83	-0.43 ± 2.13	-0.64 ± 0.31
Kidney 1	1.05 ± 0.00	-0.20 ± 3.25	-0.37 ± 3.82	-1.90 ± 0.85
Kidney 2	1.04 ± 0.01	-0.58 ± 4.90	-1.09 ± 6.27 *	-1.12 ± 2.12
Liver 1	1.06 ± 0.00	-0.75 ± 4.61	-1.01 ± 5.23	-1.68 ± 1.50
Liver 2	1.06 ± 0.00	-0.80 ± 6.31	-0.69 ± 6.90	-2.16 ± 5.32
Trabecular bone	1.19 ± 0.06	6.52 ± 6.86	-0.19 ± 6.61	-0.82 ± 5.83
Cortical bone	1.78 ± 0.03	$8.22\pm5.06^{\dagger}$	-0.07 ± 4.87	-1.22 ± 1.58
Mean error	—	$\textbf{0.42} \pm \textbf{4.55}$	$\textbf{-0.02} \pm \textbf{5.11}$	$\textbf{-1.01} \pm \textbf{2.90}$
Mean absolute error	—	2.06	0.61	1.21
Root mean square error	_	3.10	0.75	1.39


Photon vs. Particle CT

Particle CT

		% Difference to reference			
Tissue	$\mathrm{RSP}_{\mathrm{ref}}$	SECT	DECT	proton CT	Helium CT
Lung	0.90 ± 0.04	3.01 ± 11.06	0.32 ± 10.87	-0.39 ± 6.89	-0.21 ± 7.13
Belly fat	1.00 ± 0.00	$-4.57 \pm 3.35^*$	-0.24 ± 4.24	-1.92 ± 0.83	-0.07 ± 1.32
Back fat	0.97 ± 0.01	-1.75 ± 1.97	$1.74\pm3.30^{\dagger}$	0.10 ± 0.95	-0.47 ± 0.98
Marrow	0.93 ± 0.02	-3.44 ± 5.78	1.11 ± 7.01	0.68 ± 4.23	$1.23\pm3.74^\dagger$
Water	1.00 ± 0.00	2.32 ± 0.31	0.99 ± 2.31	-1.59 ± 0.21	-0.16 ± 0.25
Blood	1.05 ± 0.00	0.43 ± 0.29	0.51 ± 1.94	$0.70\pm0.29^\dagger$	0.43 ± 0.18
Cheek muscle	1.05 ± 0.01	-0.72 ± 1.49	0.22 ± 2.96	-1.68 ± 1.12	-0.24 ± 1.17
Loin 1	1.06 ± 0.00	-0.20 ± 2.18	0.47 ± 3.57	$-2.33 \pm 1.01^*$	-0.75 ± 1.38
Loin 2	1.06 ± 0.00	-0.77 ± 1.51	-0.49 ± 2.78	-1.47 ± 0.72	-0.89 ± 0.98
Leg muscle	1.05 ± 0.01	-0.14 ± 1.68	-0.50 ± 2.78	0.26 ± 0.95	0.03 ± 1.11
Brain	1.04 ± 0.00	0.61 ± 0.83	-0.43 ± 2.13	-0.64 ± 0.31	-0.63 ± 0.48
Kidney 1	1.05 ± 0.00	-0.20 ± 3.25	-0.37 ± 3.82	-1.90 ± 0.85	-0.70 ± 1.07
Kidney 2	1.04 ± 0.01	-0.58 ± 4.90	-1.09 ± 6.27 *	-1.12 ± 2.12	$-1.64 \pm 3.34^*$
Liver 1	1.06 ± 0.00	-0.75 ± 4.61	-1.01 ± 5.23	-1.68 ± 1.50	-1.41 ± 1.40
Liver 2	1.06 ± 0.00	-0.80 ± 6.31	-0.69 ± 6.90	-2.16 ± 5.32	-1.37 ± 5.34
Trabecular bone	1.19 ± 0.06	6.52 ± 6.86	-0.19 ± 6.61	-0.82 ± 5.83	-0.19 ± 6.22
Cortical bone	1.78 ± 0.03	$8.22\pm5.06^\dagger$	-0.07 ± 4.87	-1.22 ± 1.58	-0.60 ± 2.02
Mean error	—	$\textbf{0.42} \pm \textbf{4.55}$	$\textbf{-0.02} \pm \textbf{5.11}$	$\textbf{-1.01} \pm \textbf{2.90}$	$\textbf{-0.50}\pm\textbf{3.06}$
Mean absolute error	—	2.06	0.61	1.21	0.65
Root mean square error	—	3.10	0.75	1.39	0.81

Conclusion

- We present a first comparison of photon and particle CT for RSP estimation based on fresh tissues
- SECT is highly biased in low- and high density tissues
- DECT offers high accuracy
- Proton CT is currently limited by ring artefacts
- Helium CT provides good RSP accuracy and low noise
- Mind the maturity of systems!

Acknowledgements

Sample preparation Photon CT Beam time

Particle CT equipment

LOMA LINDA UNIVERSITY Data processing algorithms

