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Context
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e The inverse problem in energy loss

proton CT is

[RSP(a:)dl:WEPLi, (1)
I';

where I'; is the i-th proton path, and
WEPL is the water equivalent path
length.
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on [Schulte et al., 2008]



Distance-driven binning

e Distance-driven binning algorithm [Rit et al., 2013]

e Discretize space, pixel index j

e Discretize direction, source position
index p

e Sample MLP, depth index k




Distance-driven binning

e Distance-driven binning algorithm [Rit et al., 2013]

e Discretize space, pixel index j

e Discretize direction, source position
index p

e Sample MLP, depth index k

e Average WEPL of protons from source
position p going through pixel j
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with ¢; the indicator function for pixel j. 3




Distance-driven binning
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(b) Distance-driven projections at angles 0° and 90°
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e |s it possible to deblur the distance-driven projections using the MLP uncertainty?
e Blur in a pixel of the reconstructed image is due to a combination of the
uncertainty of different protons coming from different angles — deconvolution in

projection space
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e |s it possible to deblur the distance-driven projections using the MLP uncertainty?

e Blur in a pixel of the reconstructed image is due to a combination of the
uncertainty of different protons coming from different angles — deconvolution in
projection space

e Uncertainty in the binned data depends on depth inside object, projection angle

and transverse position 5



Methods



Shift-variant convolution

e We consider each projection distance-by-distance — set of 1D functions
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e Shift-variant convolution
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Shift-variant convolution

e We consider each projection distance-by-distance — set of 1D functions
e Shift-variant convolution

gp(u, w) /h — ', op (v, w)]Gp(u, w) du (3)

e Gaussian blurring kernel

2
/ / (u —u )
hlu —u', op(u', w)] o exp ( W). (4)
where o, (u/, w) represents the MLP uncertainty of protons with source position p
at depth w and position u’.



Shift-variant convolution

e We consider each projection distance-by-distance — set of 1D functions
e Shift-variant convolution

gp(u, w) /h — ', op (v, w)]Gp(u, w) du (3)

e Gaussian blurring kernel
2
/ / (u —u )
hlu —u', op(u', w)] o exp ( W). (4)
where o, (u/, w) represents the MLP uncertainty of protons with source position p
at depth w and position u’.
e Distance-driven binning of MLP uncertainty
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MLP uncertainty

e Standard MLP formalism [Schulte et al., 2008]

e Extended MLP formalism [Krah et al., 2018] to take into account tracker spatial
and angular resolution

Spatial resolution oy = 0.066 mm
Material budget 7/ Xy =5 x 1073
Distance between trackers dr = 10 cm
Distance trackers-isocenter 30 — 40 cm



Uncertainty maps: spiral phantom

Standard formalism (ideal trackers) Extended forg:%liosamm(jr%%distic trackers)
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Uncertainty maps: pelvis phantom
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Shift-variant deconvolution

go(sw) = [ Blu = o,y (' w))gp (o w) du (6)
e |n matrix notation, we have
8w = ngw (7)

where g,, is a vector containing one distance w of the distance-driven projection,

H,, is the shift-variant convolution matrix for this distance.

e The solution is given by
v =H,'gu. (8)
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Truncated SVD

e Singular value decomposition (SVD):
H, = USVT (9)

where U = [uy, ...,uy]| and V = [vy, ..., vy] are orthogonal matrices; and
S = diag(s1, ..., sy) is a diagonal matrix.
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Truncated SVD

e Singular value decomposition (SVD):
H, = USVT (9)
where U = [uy, ...,uy] and V = [vy, ..., vy] are orthogonal matrices; and

S = diag(s1, ..., sy) is a diagonal matrix. We write the solution as a weighted
sum of the singular vectors v;
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Truncated SVD

e Singular value decomposition (SVD):
H, = USVT (9)
where U = [uy, ...,uy] and V = [vy, ..., vy] are orthogonal matrices; and

S = diag(s1, ..., sy) is a diagonal matrix. We write the solution as a weighted
sum of the singular vectors v;

A u;
= Zf“’ Vi. (10)

e Truncated SVD: we choose a cut-off value N, < N

Nc uTg
-1 S

11



Simulations

Monte Carlo simulations with Gate [Jan et al., 2011]
Spiral phantom + head ICRP phantom

200/250 MeV fan beam over 360°

Data acquired using either ideal or realistic trackers

Spatial resolution measured using frequency corresponding to 10% of the MTF's

peak value
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Results




Results: spiral phantom

Deconvolution w/ Deconvolution w/
No deconvolution truncation at 10% truncation at 30%
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Results: spiral phantom
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Results: head phantom w/ realistic trackers

No deconvolution Deconvolution w/ truncation 30%
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Conclusions

e Spatial resolution can be improved by using the MLP uncertainty

e The resolution in a spiral phantom was increased by up to 38% for realistic
trackers and 40% for ideal trackers while keeping a similar noise level as in the
reconstruction without deconvolution

e The choice of the truncation level of the SVD should be better adapted to the
noise level in the projections

e High computational cost but parallelizable
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