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Context



Context

• List-mode set-up
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Context

• The inverse problem in energy loss
proton CT is∫

Γ̂i

RSP(x)dl = WEPLi, (1)

where Γ̂i is the i-th proton path, and
WEPL is the water equivalent path
length.

• Proton path is approximated using the
most likely path formalism based
on [Schulte et al., 2008]
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Distance-driven binning

• Distance-driven binning algorithm [Rit et al., 2013]

• Discretize space, pixel index j
• Discretize direction, source position

index p
• Sample MLP, depth index k

• Average WEPL of protons from source
position p going through pixel j

gj,p =
∑

i∈Ip

∑
k ζj(ui,k, vi,k, wk)WEPLi∑

i∈Ip

∑
k ζj(ui,k, vi,k, wk)

(2)
with ζj the indicator function for pixel j.
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Distance-driven binning

(a) Spiral phantom (b) Distance-driven projections at angles 0◦ and 90◦
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Objective

• Is it possible to deblur the distance-driven projections using the MLP uncertainty?

• Blur in a pixel of the reconstructed image is due to a combination of the
uncertainty of different protons coming from different angles → deconvolution in
projection space

• Uncertainty in the binned data depends on depth inside object, projection angle
and transverse position
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Methods



Shift-variant convolution

• We consider each projection distance-by-distance → set of 1D functions

• Shift-variant convolution

gp(u,w) =
∫
h[u− u′, σp(u′, w)]ĝp(u′, w) du′ (3)

• Gaussian blurring kernel

h[u− u′, σp(u′, w)] ∝ exp
(
− (u− u′)2

2σp(u′, w)2

)
. (4)

where σp(u′, w) represents the MLP uncertainty of protons with source position p
at depth w and position u′.

• Distance-driven binning of MLP uncertainty

σj,p =

√√√√∑i∈Ip

∑
k ζj(ui,k, vi,k, wk)σ2

MLP,i(wk)∑
i∈Ip

∑
k ζj(ui,k, vi,k, wk) (5)
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MLP uncertainty

• Standard MLP formalism [Schulte et al., 2008]
• Extended MLP formalism [Krah et al., 2018] to take into account tracker spatial
and angular resolution
• Spatial resolution σt = 0.066 mm
• Material budget x/X0 = 5× 10−3

• Distance between trackers dT = 10 cm
• Distance trackers-isocenter 30− 40 cm
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Uncertainty maps: spiral phantom
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Uncertainty maps: pelvis phantom
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Shift-variant deconvolution

•
gp(u,w) =

∫
h[u− u′, σp(u′, w)]ĝp(u′, w) du′ (6)

• In matrix notation, we have
gw = Hwĝw (7)

where gw is a vector containing one distance w of the distance-driven projection,
Hw is the shift-variant convolution matrix for this distance.

• The solution is given by
ĝw = H−1

w gw. (8)
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Truncated SVD

• Singular value decomposition (SVD):

Hw = USVT (9)

where U = [u1, ...,uN ] and V = [v1, ...,vN ] are orthogonal matrices; and
S = diag(s1, ..., sN ) is a diagonal matrix.

We write the solution as a weighted
sum of the singular vectors vi

ĝw =
N∑

i=1

uT
i gw

si
vi. (10)

• Truncated SVD: we choose a cut-off value Nc < N

ĝw =
Nc∑
i=1

uT
i gw

si
vi. (11)
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Simulations

• Monte Carlo simulations with Gate [Jan et al., 2011]
• Spiral phantom + head ICRP phantom
• 200/250 MeV fan beam over 360◦

• Data acquired using either ideal or realistic trackers
• Spatial resolution measured using frequency corresponding to 10% of the MTF’s
peak value
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Results



Results: spiral phantom
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Results: spiral phantom
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Results: head phantom w/ realistic trackers
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Conclusions

• Spatial resolution can be improved by using the MLP uncertainty
• The resolution in a spiral phantom was increased by up to 38% for realistic
trackers and 40% for ideal trackers while keeping a similar noise level as in the
reconstruction without deconvolution

• The choice of the truncation level of the SVD should be better adapted to the
noise level in the projections

• High computational cost but parallelizable
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