James Keal¹, Alexandre Santos^{1,2}, Scott Penfold^{1,2}, & Michael Douglass^{1,2}

Simplex noise as training data for learned 3D dose calculation

adelaide.edu.au

Dose Calculation

Machine Learning for Dose Calculation

THE PROBLEM

Machine learning requires data

TRAINING DATA

A POTENTIAL SOLUTION

Simplex noise as training data

Simplex Noise

Simplex Noise

ALGORITHM

- Generate one noise volume per material
- Rescale each noise volumes to material density
- Generate another noise volume per material
- Sample nth scaled noise volume where nth unscaled noise volume is minimal

EVALUATION

Simplex noise

Encoding Fields

DENSITY CHANNEL

The University of Adelaide

Encoding Fields

$$\Psi_0(\boldsymbol{r}, E) = \frac{e^{-\tau(\boldsymbol{r}_0 \to \boldsymbol{r}, E)} Q_A(\boldsymbol{r}_0, E)}{|\boldsymbol{r} - \boldsymbol{r}_0|^2}$$

DENSITY CHANNEL

FLUENCE CHANNEL

Encoding Fields

HD U-NET

Source: Nguyen et. al. 2019

RESULTS

Simplex noise

MEGAVOLTAGE X-RAYS

The University of Adelaide

MEGAVOLTAGE X-RAYS

The University of Adelaide

CONCLUSIONS

Simplex noise is a viable source of high quantity, high quality training data for dose calculation using machine learning.

A model trained using the proposed framework may be fast enough to use in inverse optimisation algorithms/as a secondary MU calculation.

james.keal@adelaide.edu.au