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Irtificial Intelligence and its Applications in Medicin.

v

Machine Learning/
Deep Learning

Computer Vision

Natural Language
Processing (NLP)

Expert System

Robotics & Control

TECHNOLOGY

- New algorithms for improved
classification, detection,
segmentation & other image
analysis tasks.

- NLP tools for medical semantics / ‘

& search V4
- Enhancement & expansion of /
existing AIM techniques :

APPLICATIONS

- Al augmented medical devicesu‘w“z,_
& wearables. \

FUNDAMENTALS

Data science & mathematical
(famework

- High performance computing
(GPU/TPU/multi-core CPU, cloud
computing, quantum computing)

- Analytics tools & algorithms (data
dimensionality reduction, visualization,
compression, various machine
learning/deep learning algorithms)

Basic machine learning software

- Analysis of biological, imaging, \

EMR, and therapeutic data for
clinical decision-making.

- Robotic interventions.

- Biomarker discovery& drug

DATA & DATABASE

- Data curation & augmentation
- Data harmonization & mining
- Data sharing & security

- Federated learning
% Search engine (data, text,

audio, video, image, etc.)

OTHER RELATED ISSUE

/Training of future physicians,

healthcare professionals, &

next generation of Al
workforce.

- Economic, politic, social, ethic
and legal issues.

- Workflow and clinical
implementation.
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Machine Learning/Deep Learning

Input and OUtpl}t Applications & Examples
Data for Al Modeling

- Superresolution
imaging

- Image search

- Image inpaiting

Mapping between the
same data domains

- Image reconstruction

Data domains related by - sparse data problem
known law(s) - Modehng physma!/
mathematical relation

--Modeling of
therapeutic response
- Drug design &

Data domains related by biomarker discovery

empirical evidence or - Translation, semantic
measurement(s) analysis

- Auto-annotation
- Modeling correlative
relationship
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Types of learning

< Supervised learning
< Unsupervised learning
< Relnrorcement learning




Image
reconstruction

High
dimensional
imaging

Sparsification
compression

Modeling

segmentation

ISR detection &
segmentation

registration

~ Intra-moda

Supervised
planning

- Unsupervised

_Reimforcement
learning

oncelogy worl

Treatment planning

Image-guided patient
setup & delivery

Monoscopic
imaging

Stereoscopic
imaging

Cone beam
CT

Follow up

Therapeutic
response
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"ML for Medical Image Analysis

* Images reconstruction — low dose CT, fast MRI
* Imaging is one of the first choices for clinical diagnosi
* 70% clinical decisions depend on medical images

Molecular

imaging Information technology ‘2] _
Al ) "
=L Endoscopy

Anatomy | | l | | |
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*  We can directly visualize the network’s attention
when processing an input video.

¢ The discriminative regions of tumor are highlighted,
suggesting the model works as expected and is able to
identify tumors from artifacts and background.

E. Shkolyar, X. Jia, T.C. Chang, D. Trivedi, K. E. Mach, M. Meng, L. Xing,
J. Liao, European Urology 76, 714-718, 2019




rage-based prosta
& virtual biopsy

=[mportance
= Different cancer levels (Gleason score) lead to different therapy B

=Reduce the core needle biopsy

*Modality for diagnosis

*Magnetic Resonance Imaging (MRI)

T2-weighted images T2-weighted images Apparent Diffusion T1-weighted
(transaxial) (sagittal) Coefficient images Contrast images

Y. Yuan, W. Qin, B. Han, et al, Medical Physics, 2019
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Projection-domain scatter correction for cone beam computed tomography
using a residual convolutional neural network
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Purpose: Scatter is a major factor degrading the image quality of ¢
(CBCT). Conventional scatter correction strategies require hander
hoc assumptions, which often leads to less accurate scatter remova
effective scatter correction method using a residual convolutional ne

Med Phys. & (7). July D19 00M2OS201946(7)3142/%  © 2019 Amarican Assodationof Physiciets In Medicine 3142




ual-energy CT imaging using deep learning (Full 3D Meeting, 2019)

The HU difference between the predicted and original high-energy CT
images are 3.47 HU, 2.95 HU, 2.38 HU and 2.40 HU for ROIs on spine,
aorta, liver and stomach, respectively.

100 kV VNC VNCp, lodine

Transversal

Coronal

Sagittal
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m super-resolution imaging to super
resolution dose calculation

Information Sciences 468 (2018) 142-154

Contents lists available at ScienceDirect
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Learning deconvolutional deep neural network for high )
resolution medical image reconstruction i
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Keywords:

Super resolution reconstruction can be used to recover a high resolution ima
resolution image and is particularly beneficial for clinically significant medi
diagnosis, treatment, and research applications. However, super resolution is
inverse problem due to its ill-posed nature. In this paper, inspired by recent
in deep learning, a super resolution algorithm (SR-DCNN) is proposed for m
that is based on a neural network and employs a deconvolution operation. T
the deconvolution is to effectively establish an end-to-end mapping betwee:
high resolution images. First, training data consisting of 1500 medical image
brain, heart, and spine, was collected, down-sampled, and input into the ne
Then, patch-based image features were extracted using a set of filters and t

ct DoseNet




per-resolution dose transformation and
machine learning-based dose calculation

AAA AXB
DL model

low resolution high resolution

dose

dose

0.0

DL model DDN
low cost high resolution
algorithm & dose, highly
low resolution accurate algorithm

DL model
ultra-low cost high resolution
GUNESEILE P. Dong & L. Xing, Deep DoseNet: a deep neural

algorlthm & dose, hlgh1Y network for accurate dosimetric transformation

low resolution accurate algorithm between different spatial resolutions and/or different
dose calculation algorithms for precision radiation

therapy, Phys. Med. Biol., 2019

1. Nomura Y, Wang J, Shirato H, Shimizu S, Xing L, Fast spot-scanning
proton dose calculation method with uncertainty quantification using a
three-dimensional convolutional neural network, PMB Jun. 2020




Machine learning provides a new way for small
field dosimetry and plan QA

Dataset of
radiotherapy plans

Training Testing
dataset dataset

Res-pix2pix model
training

shapes

Predicted MUs/MLC

J. Fan, L. Xing, Y. Yang, under review

Frequency

Output factor prediction
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E. Schueler, W. Zhao, et al, in preparation
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Patient-specific reconstruction of volumetric
computed tomography images from a single
projection view via deep learning

yiniy

¥
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&
Liyue Shen*3, Wei Zhao®"? and Lei Xing®"2*
=
Tomographic Imaging using penetrating waves generates cross- sectlonal \fiews of the Internal anatomy of a living subject. For i)
artefact-free {1 pr views from a large are req . Here we show that =
a deep-learning model trained to map projection radlographs of a ln the cor 3D v can v -
generate volumetric tomographic X-ray Images of the patient from a single p! view. We =]
of the app with upper. lung, and head-and-| ne:k compuleu lomugraphy scans from three palienls volumelrl: E
reconstruction via deep learning could be useful in | Int such as therapy and nee-

dle blopsy, and might help simplify the hardware of tomographic Imaging systems.
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Shen L, Zhao W, Xing L, Nature Biomedical Engineering 3, 880-808, 2019
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Fig. 2. Architecture of the proposed deep learning network. The input of the model is a
single or multiple 2D projection(s). The representation network learns feature representation of
physical structure from the input. The extracted 2D feature vector is reshaped and transferred by
the transform module to 3D representation cube for subsequent reconstruction. The generation
network utilizes representative features extracted in the former stages to generate the
corresponding 3D volumetric images.

Shen L, Zhao W, Xing L, Nature Biomedical Engineering 3, 880-808, 2019




Sparse Data MR Image Reconstruction

Data Sampling
Raw data are sampled point by point in Fourier domain (k-space)

Image Reconstruction
Inverse Fourier transform is applied on the raw data to generate output in the
image domain

M. Mardani,..., L Xing, J Pauly, TMI, 2019
Y. Wu, et al, Mag. Res. Imag., 2019




integrated MRI-Radiotherapy Systems:
MRI Guided Localization & Delivery




Segmentation of organs-at-risks in head and neck CT images using
convolutional neural networks

Bulat Ibragimov® and Lei Xing
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA

(Received 2 May 2016; revised 31 October 2016; accepted for publication 23 November 2016;
published 13 February 2017)
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i Purpose: Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of
| radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep
\ learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its perfor-
| mance against state-of-the-art automated segmentation algorithms, commercial software, and '
1 server variability.
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Dropout

T RelU

Input samples Convolution layer Max-pooling layer Classification

Fio. 1. A schematic illustration of the convolutional neural network architecture. Three orthogonal cross-sections around target voxel define the input of the net-
‘work that consists of three stacks of convolution, ReLU, max-pooling layer, and dropout layers, fully connected and softmax layers. [Color figure can be viewed
at wileyonlinelibrary.com]

Medical Physics, 44 (2), February 2017

)
Liver
H 1 Score B
#1 in the Liver Tumor —— Dual-frame T
A U-Net /pyramid pooling :
Segmentation Challen ge DSC (%) 97.18 £ 1.22 97.46 £ 1.29 97.89 +1.01 98.77+1.03
< VOE (% 5.81+2.48 5.05+2.29 3.71+2.25 3.10+2.01
(LiTS-ISBI2017) g 310+201
RVD (%) 0.91 £0.19 0.77 +0.14 0.33+0.10 0.27 +0.10
ASSD (mm) 1.80 £ 0.55 1.81£0.56 1.06 +0.40 0.92+0.37
- H. Seo, R. Xiao, L. Xi ng MSSD (mm) 12.48 £ 5.12 13.75 + 5.38 9.37 £3.99 8.53£3.65
Table 1. Quantitative scores of the liver-segmentation results. All metric is describT in d,e';ta'l'l in (30).




utonomous treatment planning forRT

-CT
*Segment

-® ¢

Plan predicted by
deep learning

M. Ma, N. Kovalchuk, M. Buyyounouski, L. Xing, Y. Yang, Med Phys, 2019
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Monte Carlo tree search -based non-coplanar trajectory design
for station parameter optimized radiation therapy (SPORT)

Peng Dong, Hongcheng Liu and Lei Xing
Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847, United States of America

E-mail: Lei@stanford.edu

Keywords: artificial intelligence, SPORT, VMAT, MCTS, inverse planning, dose optimization

Abstract
An important yet challenging problem in LINAC-based rotational arc radiation therapy is the design
of beam trajectory, which requires simultaneous consideration of delivery efficiency and final dose
distribution. In this work, we propose a novel trajectory selection strategy by developinga Monte
Carlo tree search (MCTS) algorithm during the beam trajectory selection process.

To search through the vast number of possible trajectories, the MCTS algorithm was
implemented. In this approach, a candidate trajectory is explored by starting from a leaf node
and sequentially examining the next level of linked nodes with consideration of geometric and
physical constraints. The maximum Upper Confidence Bounds for Trees, which is a function of
average objective function value and the number of times the node under testing has been visited,
was employed to intelligently select the trajectory. For each candidate trajectory, we run an inverse
fluence map optimization with an infinity norm regularization. The ranking of the plan as measured
by the corresponding objective function value was then fed back to update the statistics of the nodes
on the trajectory. The method was evaluated with a chest wall and a brain case, and the results were
compared with the coplanar and noncoplanar 4pi beam configurations.

For both clinical cases, the MCTS method found effective and easy-to-deliver trajectories within
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Landmark detection in cephalometric analysis

Proposed landmark detection framework
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» Example of prostate motion tracking in AP direction
* The predict prostate position match the ground truth quite well.




ncreas, lung, etc.

Tracking on PTV for
pancreas radiotherapy

Zhao et al ,|IJROBP, 2019

Patient 1

Patient 2

N

Ground truth

Predicted

LR(90°) Oblique(45°)

i
44

[ Ground truth Predicted




Without FMs

With FMs

N

L

AP(0°)

T.F.'

’

LR(90°)

Oblique(45°)

Table 1. Mean absolute differences and Lin's concordance correlation coefficients between the predicted and annotated

PTV positions in anterior-posterior, left-right, and oblique directions. Data are shown as means+standard deviations.

Anterior-posterior Left-right Oblique
Index MAD MAD; MAD MAD; MAD MAD;
(mm) Pc (mm) Pc (mm) Pc (mm) Pc (mm) Pc (mm) Pc
1 1.95+0.75 | 0.94 | 2.55+1.28 | 0.95 | 0.46+0.48 | 0.99 | 0.97+0.64 | 0.8 | 0.74+0.64 | 0.98 | 1.49+1.14 | 0.97
2 1.49+1.53 | 0.95 | 2.41+1.86 | 0.94 | 0.60+2.21 | 0.94 | 0.38+1.31 | 0.95 | 1.02+0.72 | 0.98 | 2.25+1.44 | 0.95
wo/ FMs | 1.36+0.65 | 0.97 | 1.41+1.48 | 0.97 | 0.34+0.41 | 0.99 | 1.32+0.92 | 0.98 | 0.68+0.68  0.98 | 1.31+0.89 | 0.98
w/FMs | 1.33+1.15 | 0.96 | 2.49+1.75 | 0.94 | 0.51+0.64 | 0.98 | 1.57+1.21 | 0.97 | 0.83+1.38 | 0.95 | 1.47+1.81 | 0.94




Om-population-averager

- deep learning-based toxicity prediction
- B. Ibrambrov, D. Toesca, D. Chang, A Koong, L Xing

Current approach:

(i) NTCP/TCP types of modeling

- J

Problems: biological heterogeneity, spatial information




eep dose-toxicity prediction

Multi-path network: 1) 3D CNN for dose plan; 2) fully-connected path for features

Neural network
Convolutional path
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True positive rate

ROC curves for Central Liver Toxicity Prediciton

1

True positive rate

ROC curves for Central Liver Toxicity Prediciton
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On-going research

* Better AI models.

e Interpretable and trustworthy Al.
* General instead of task-specific Al.
® Data & annotation.

¢ Clinical implementation and workflow related
issues.




Summar

Modeling Treatment planning Image-guided patient Follow up

Imaging

setup & delivery
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