

The single sided digital tracking calorimeter designed and developed by the Bergen pCT group

Pierluigi Piersimoni & Jarle Rambo Sølie on behalf of the Bergen pCT collaboration

UNIVERSITY OF BERGEN

The Bergen pCT collaboration

2

pierluigi.piersimoni@uib.no

The project: build a new pCT scanner

Institutions

- University of Bergen, Norway
- Helse Bergen, Norway
- Western Norway University of Applied Science, Bergen, Norway
- Wigner Institute Budapest, Hungary
- DKFZ Heidelberg, Germany
- Utrecht University, The Netherlands
- LTU, Kharkiv, Ukraine
- Suranaree University of Technology, Nakhon Ratchasima, Thailand
- China Three Gorges University, Yichang, China
- University of Applied Sciences Worms, Germany
- University of Oslo, Norway
- Eötvös Loránd University, Budapest, Hungary

Financing

• 5 years (2017-2021)

<u>Status</u>

- Finishing the optimization of the design
- Start mass-production of the sensor chips
- Sensor characterization
- MC simulations to investigate
 image reconstruction accuracy

The Norwegian government has decided to build two particle therapy facilities (Oslo, Bergen) to be operational by 2022

The pCT imaging concept

Trajectory and residual energy of each **single particle history** crossing an object from different directions

pCT at Bergen

Same technology for tracking and energy detector: High-granularity Digital Tracking Calorimeter - DTC

No Front Tracker assuming direction and position from TPS information

Measure particles exit position and direction

Track particles to find range

The ALPIDE chip UNIVERSITY OF BERGEN

- The ALPIDE pixel sensor is a CMOS Monolithic Active Pixel Sensor (MAPS)
- Chip size: 30 mm x 15 mm
- Chip thickness: 50 μm or 100 μm
- 1024 x 512 pixels

6

- Pixel size: ~ 29 x 29 µm²
- Integration time: ~4 µs
- On-chip data reduction

The ALPIDE high-granularity allows to disentangle and reconstruct a large number of concurrent proton tracks

Design team:

CCNU Wuhan, CERN Geneva, YONSEI Seoul, INFN Cagliari, INFN Torino, IPHC Strasbourg, IRFU Saclay, NIKHEF Amsterdam

Current design of the prototype

2 Tracking layers

Current design of the prototype

- The calorimeter is multi-layer structure made of ALPIDEaluminum sandwiches
- AI (3.5 mm) works as absorber (1.5 mm thick) and carrier (2 × 1.0 mm thick)
- 41 aluminum absorber layers needed to stop a 230 MeV proton beam
- The area of the sensitive part of each layer is 15 cm × 27 cm
- The detector will track the traversing particles and assign an energy difference or water equivalent path length (WEPL) to each single crossing proton with an uncertainty of ~ 1%

Tracker and Calorimeter layers have the same structure, except:

- no absorber in the trackers
- a thin (~200 µm) Carbon-epoxy sheet functions as carrier
- the ALPIDE is 50 μm (not 100 μm) thick

UNIVERSITY OF BERGEN

Design of layer

- The ALPIDE chip is mounted on a flex cable
- 9 ALPIDEs mounted on flex cable (string)

UNIVERSITY OF BERGEN

Design of layer

- Three strings are subsequently glued on a carrier, called a slab
- Two types of slabs: T-slab and B-slab together make a half layer

The trackers will have a whole slab, not two half slabs, made of carbon-epoxy

Current design of the prototype

- One full layer is made of 2 half layers with alternated positions of ALPIDEs
- The two halves of the layer are then stacked with the ALPIDEs facing each other and with an air-gap of 2 mm

UNIVERSITY OF BERGEN **Electronics design**

The pCT data acquisition (DAQ) and run-control (RC)

- - unit (pRU)

UNIVERSITY OF BERGEN

Frontend electronics

- Each layer in the detector is electrically identical and is composed of 108 sensor ALPIDE chips
- Nine chips are mounted together on a string where clock and slow control signals are shared
- The ALPIDEs are bonded to thin, flexible printed circuits (**FPC**) of aluminum and polyimide (Pi) called *flex*
- A transition card (TC) is used as an intermediate medium between the frontend electronics and the readout electronics for each layer
- The cards also deliver stable power to the sensors
- As the TC is placed in a high-radiation area, only pre-tested radiation hard components are used for power regulation

Readout unit for pCT

- The pRU is based on a Xilinx Kintex Ultrascale FPGA
- The FPGAs provide high enough bandwidth to handle the 108 data links
- The pRUs are placed together in a crate that supplies power and allows for board-to-board communication and synchronization
- Trigger-less readout architecture designed to continuously capture data with minimal integration time over a short period of time
- With these features, a capture rate of 10 µs with a gap of roughly 250 ns for only few seconds will provide enough data for a single 2D-image

Monte Carlo simulation - general setup

- GATE version 8.2 with Geant4 version 10.5.1
- Representation of the DTC sandwich structure accounting for the full material budget of the DTC
- This model was used to simulate and reconstruct proton radiographs (pRad) and full pCT scans with different phantoms
- Physics builder list QBBC_EMZ activated for the simulations, as recommended by the GATE Radiation Therapy and Dosimetry working group

Monte Carlo simulation - DTC model

- The MC model has exactly the same materials and material budget as the planned detector
- All the detector components were approximated as slabs with different thicknesses to eliminate the intended overlapping structures and subsequent calibration

Conclusions

- Thanks to high-granularity and high speed readout high intensity beams can be handled by the DTC
- The final version of the ALPIDE strings are being bonded and will be ready to be tested soon
- The full DTC should be finished presumably in two years
 - The DTC could be positioned downstream of the patient during the treatment with a carbon-helium mixed beam
 - Placing the detector beside the treated patient at an opportune angle, secondary radiation (e.g., gamma, neutron) originating from the Bragg peak area could be tracked for *in situ* range verification
 - Machine learning investigation to analyze secondary radiation originating from the Bragg peak and possibly to improve track reconstruction

Thanks to all our collaborators

Utrecht University

UNIVERSITY

Removing the front tracker pair; investigations and observations (Monte Carlo)

By Jarle Rambo Sølie

19 Pierluigi Piersimoni - 6th Annual LLU Workshop

pierluigi.piersimoni@uib.no

