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Problem Statement

Try to reconstruct an object from projections taken while the
object is moving.
As a first effort, we will use a simple moving ellipsoid phantom
and straight line projection data.
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Ellipsoids

A solid ellipsoid can be specified with 10 parameters: cx, cy, cz, u,
v, w, α, β, γ and density, where

cx, cy, cz is the translated position of the center of the ellipsoid
u, v, w are the lengths of the semi axes of the unrotated
ellipsoid in the X, Y, and Z directions, respectively
α, β, γ are the Euler rotation angles in ZYZ order
density is the density of the object
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A simple moving ellipsoid phantom

The moving ellipsoid is
arbitrarily defined as

cx = −3.6 cos(2πt)
cy = −1.8 sin(2πt)
cz = −3 cos(2πt)
u = 5.5+ 0.5 sin(2πt)
v = 6.5+ 0.5 sin(2πt + π)
w = 11+ sin(2πt + π/2)
α = 15π

180 sin(2πt + π/4)
β = 15π

180 sin(2πt + π)
γ = 20π

180 sin(2πt)
density = 1

The reference image is
arbitrarily defined as

cx = 0
cy = 0
cz = 0
u = 5.5
v = 6.5
w = 11
α = 0
β = 0
γ = 0

density = 1
Note that the moving ellipsoid has a period of 1.
5 instances of the moving ellipsoid are generated at t=0.0, 0.2, 0.4,
0.6 and 0.8.
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Images of the phantom at the 5 time intervals and the
reference image

t=0.0 t=0.2 t=0.4 t=0.6 t=0.8 reference

Z=0

X=0

Y=0



Projection data collection

We generated noiseless parallel straight line projection data using a
circular orbit at 1◦ intervals over 360 degrees. The projection at
angle n was taken with t = 0.2× n.
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Reconstruction from moving data projections

The top row is a repeat of the reference image.
The bottom row is a reconstruction using the moving projection
data where the motion was ignored.
Can we do better?
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Discrete reconstruction problem

Let x be a 3D digitized image consisting of I voxels. xi ∈ R is
the value of the ith voxel where i ∈ [1..I ].
Let d be the vector of J ray sums. dj ∈ R is the value of the
jth ray, rj , where j ∈ [1..J].
The path of the ray, rj , that generated ray sum dj is known.
Let A be the I × J projection matrix. ai ,j ∈ R is the value of
the i , jth component of A.
The discrete reconstruction problem is to find an approximate
solution to

Ax = d .

There are many algorithms that solve this problem. ART is
one of them.
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Calculation of elements of A in the normal case

The elements of the matrix A, ai ,j are the lengths of the
intersection of ray j with voxel i .
For simplicity we use 2D images. 3D is implied.
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Motion assumptions

We assume that:
there exists a motion model that relates an independent
variable or variables to the motion states. In our case, the
independent variable is time. Another alternative is volume
and flow.
the motion can be approximated by a finite number, B, of
motion bins, Mb, for b ∈ [1..B] and there is a function, f , that
maps the independent variable to a bin number.
if ~pi is the position of the center of voxel i in the reference
image the motion model gives us ~Mb(~pi ), the position of ~pi in
motion bin b.
for every ray, r , the value of the independent variable is
known. I.e., there is a function, g , that maps rays to the time
when the ray was measured and thus f (g(r)) is the
corresponding motion bin for ray r .
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Transformed locations of voxel centers

An illustration of possible displacement of voxel centers at motion
bin b.
Problems: How to define voxel i and the intersection of ray j with
that voxel?
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Voronoi diagrams

From wikipedia:

We are given a finite set of points {p1, ..., pn} in the Euclidean
plane. In this case each site pk is simply a point, and its
corresponding Voronoi cell Rk consists of every point in the
Euclidean plane whose distance to pk is less than or equal to its
distance to any other pk. Each such cell is obtained from the
intersection of half-spaces, and hence it is a convex polygon. The
line segments of the Voronoi diagram are all the points in the plane
that are equidistant to the two nearest sites. The Voronoi vertices
(nodes) are the points equidistant to three (or more) sites.

This definition easily extends to an n-dimensional Euclidean
space.
In 3D, each Voronoi cell is a convex polyhedron.
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Voronoi diagram of transformed voxel centers

The Voronoi cells for the previous distribution of points.
Problem: How to find the boundaries of the Voronoi cells?
The Fortune algorithm can generate the Voronoi diagram in 2D. It
does not extend to 3D.
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Delaunay triangulation

From wikipedia:

In mathematics and computational geometry, a Delaunay
triangulation (also known as a Delone triangulation) for a given set
P of discrete points in a plane is a triangulation DT(P) such that
no point in P is inside the circumcircle of any triangle in DT(P).

The triangulation is unique unless 4 points lie on a
circumcircle.
The triangulation extends to 3D with triangles replaced by
tetrahedrons and circles with spheres.
In 3D the Delaunay tetrahedralization is unique unless 5 points
lie on a circumsphere.
For our purposes, uniqueness is unimportant. When multiple
solutions exist, any one of them is acceptable.
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Duals

Two problems are duals when the solution of one provides the
solution to the other.
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Voronoi diagrams and Delaunay triangulation are duals

The Computational Geometry Algorithms Library (www.cgal.org)
includes a C++ implementation of an algorithm to compute the
Delaunay tetrahedralization.
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Intersection of a ray with a Voronoi cell

Intersect the ray with each of the planes that define the sides
of the Voronoi cell.
Test each intersection to see if it is in the Voronoi cell.
There will be zero or two such points.
When there are two points, save the neighboring cells on the
other side of the two planes.
ai ,j is the distance between the the two points.
The saved cells are the previous and next cells intercepted by
the ray.
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Motion Adapted Reconstruction

The top row is a repeat of the reference image.
The bottom row is a reconstruction from the moving data using the
modified projection matrix.
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But it is not perfect

Previous image, but with level=1 and window=0.1.
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Conclusions

Given a motion model, we have shown that using Voronoi cells
we can remove the effect of motion at the cost of other
artifacts.
Since the only change was to modify the projection matrix A,
the method can be used with any iterative reconstruction
algorithm.
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Future work

Identify the cause of the artifacts and try to remove them.
Apply these concepts to more realistic pCT data and
reconstruct using MLP.
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