G4_Med, a Geant4 benchmarking tool for medical physics applications

P. Arce¹, D. Bolst², M-C. Bordage³, P. Cirrone⁴, M.A. Cortes-Giraldo⁵, D. Cutajar², G. Cuttone⁴, L. Desorgher⁶,
P. Dondero⁷, A. Dotti⁸, B. Faddegon⁹, C. Fedon¹⁰, <u>S. Guatelli²</u>, S. Incerti¹¹, V. Ivanchenko¹², D. Konstantinov¹³,
I. Kyriakou¹⁴, G. Latyshev¹³, A. Le², C. Mancini-Terracciano¹⁵, A. Mantero⁷, M. Maire¹⁶, M. Novak¹⁷, C. Omachi¹⁸,
L. Pandola¹⁹, A. Perales²⁰, Y. Perrot²¹, G. Petringa⁴, J.M. Quesada⁵, J. Ramos-Méndez⁹, F. Romano²², D. Sakata²,
L.G. Sarmiento²³, T. Sasaki²⁴, I. Sechopoulos¹⁰, E. Simpson²⁵, T. Toshito¹⁸, D. H. Wright²⁶

¹CIEMAT, Spain, ²CMRP, University of Wollongong, Australia, ³CRCT (INSERM and Paul Sabatier University), France, ⁴INFN LNS Catania, Italy, ⁵Universidad de Sevilla, Spain, ⁶Radiophysics Institute, Switzerland, ⁷SWHARD srl, Italy, ⁸Former SLAC, USA,⁹University of California San Francisco, USA, ¹⁰Radboud University Medical Center, The Netherlands, ¹¹CENBG, France, ¹²Tomsk State University, Russian Federation, ¹³IHEP, Protvino, Russian Federation, ¹⁴Ioannina University, Greece, ¹⁵Roma 1, INFN, Italy, ¹⁶LAPP, IN2P3, France, ¹⁷CERN, Switzerland, ¹⁸Nagoya Proton Therapy Center, Japan, ¹⁹INFN Gran Sasso, Italy, ²⁰Clínica Universidad de Navarra, Spain, ²¹IRSN, France, ²²NPL, UK, ²³Lund University, Sweden, ²⁴KEK, Japan, ²⁵ANU, Australia, ²⁶SLAC, USA

Geant4

- Monte Carlo code modelling particle transport and interactions in matter
 - Maintained by a large international Collaboration (> 100 members)
 - www.geant4.org

Geant4 Collaboration Meeting, October 2017, Wollongong, Australia

Geant4 Collaboration, NIM A, Vol: 506, pp: 250-303 has >9000 citations

Most cited publication authored by CERN excluding the Review of Particle Properties

Applications

- Verification of radiotherapy Treatment Planning Systems
- Improvement/optimisation of QA instrumentation
- Dosimetry and production of radiopharmaceuticals
- Imaging (e.g. PET, SPECT, CT)
- Detector design
- Radiation protection in Earth Labs, aviation and space
 - Design shielding solutions

Geant4 Medical Simulation Benchmarking Group

https://twiki.cern.ch/twiki/bin/view/Geant4/G4MSBG

LUND

UNIVERSITY

- Created in 2014. •
- **Current Coordination Team:** ۲
 - **Coordinator:** Susanna Guatelli (Univ. Wollongong, Australia)
 - **Deputy-coordinator:** Pedro Arce (CIEMAT, Spain)
- 37 researchers; 25 institutions from 12 different countries

Motivation & Goals

- Geant4 offers many pre-built physics lists. Which one is more adequate for a specific medical physics application scenario?
- G4-Med project:
 - 18 tests to benchmark Geant4 prebuilt physics lists for medical physics applications
 - Against reference data and experimental measurements
 - Executed at CERN in regression testing
- Goals:
 - Provide physics list recommendations
 - Monitor physics capability of Geant4

https://twiki.cern.ch/twiki/bin/view/Geant4/G4MSBG

tested. The tests are integrated in the geant-val test as system to be executed for benchmarking and regression testing. The test are executed using the CERN computing infrastructure.

List of current tests

CERN

Currently the G4-Med system includes 18 tests

Test	geant-val layout	Authors		
Photon attenuation coefficients	PhotonAttenuation	S. Guatelli, L. Pandola		
Electron stopping powers	ElectronDEDX	V. Ivanchenko		
Low energy electron backscattering	ElectronBackScat	P. Dondero, A. Mantero, V. Ivanchenko, M. Novak		
Electron scattering from foils at 13-20 MeV kinetic energies	ElecForwScat	B. Faddegon, J. Ramos-Méndez		
Bremsstrahlung yield	Bremsstrahlung	B. Faddegon, J. Ramos-Méndez		
Fano cavity	Fano cavity	P. Arce , M. Maire, M. Novak		
Electron Dose Point Kernel	LowEElecDPK	S. Incerti, MC. Bordage, I. Kyriakou, Y. Perrot		
Microdosimetry	Microyz	S. Incerti, I. Kyriakou		
Brachytherapy - dose rate	Brachy-ir	S. Guatelli, D. Cutajar		
Dosimetry - clinical 5-6 MeV electron beam	To be added	L. Desorgher		
Dosimetry for mammography	Mammo	C. Fedon, I. Sechopoulos		
Hadronic nucleus-nucleus inelastic cross section	NucNucIneIXS	D. Sakata, S. Guatelli, E. Simpson		
Bragg curves in water for 67.5 MeV protons	LowEProtonBraggPeak	B. Faddegon, J. Ramos-Méndez		
Absolute neutron yield for protons	ProtonC12NeutronYield	B. Faddegon, J. Ramos-Méndez		
Production cross sections of different fragments	C12FragCC	C. Omachi, T. Toshito, T. Sasaki		
62 MeV /n C-12 fragmentation on Carbon target	LowEC12Frag	C. Mancini-Terracciano		
400 MeV/n C-12 fragmentation	C12Frag	D. Bolst, S. Guatelli, F. Romano		
Estimation of proton radiobiological damage	LowEProtonRBE	G. Petringa, GAP Cirrone L. Pandola, G. Cuttone		
Light ion (proton, 3He, carbon) range and depth dose curves in water	LightIonBraggPeak	M. Cortes-Giraldo, A. Perales, J. M. Quesada Molina		

Integration in *geant-val* for Automatized Regression Tests

https://geant-val.cern.ch/

Publication: Luc Freyermuth, Dmitri Konstantinov, Grigorii Latyshev, Ivan Razumov, Witold Pokorski, Alberto Ribon EPJ Web Conf. 214 05002 (2019) DOI: 10.1051/epjconf/201921405002

G4_Med is integrated in **geant-val** to execute regularly automatized regression tests on the CERN computing infrastructure

Tests included in G4-Med

https://twiki.cern.ch/twiki/bin/view/Geant4/G4MSBG

List of current tests

Currently the G4-Med system includes 18 tests.

Test	geant-val layout	Authors		
Photon attenuation coefficients	PhotonAttenuation	S. Guatelli, L. Pandola		
Electron stopping powers	ElectronDEDX	V. Ivanchenko		
Low energy electron backscattering	ElectronBackScat	P. Dondero, A. Mantero, V. Ivanchenko, M. Novak		
Electron scattering from foils at 13-20 MeV kinetic energies	ElecForwScat	B. Faddegon, J. Ramos-Méndez		
Bremsstrahlung yield	Bremsstrahlung	B. Faddegon, J. Ramos-Méndez		
Fano cavity	Fano cavity	P. Arce , M. Maire, M. Novak		
Electron Dose Point Kernel	LowEElecDPK	S. Incerti, MC. Bordage, I. Kyriakou, Y. Perrot		
Microdosimetry	Microyz	S. Incerti, I. Kyriakou		
Brachytherapy - dose rate	Brachy-ir	S. Guatelli, D. Cutajar		
Dosimetry - clinical 5-6 MeV electron beam	To be added	L. Desorgher		
Dosimetry for mammography	Mammo	C. Fedon, I. Sechopoulos		
Hadronic nucleus-nucleus inelastic cross section	NucNucIneIXS	D. Sakata, S. Guatelli, E. Simpson		
Bragg curves in water for 67.5 MeV protons	LowEProtonBraggPeak	B. Faddegon, J. Ramos-Méndez		
Absolute neutron yield for protons	ProtonC12NeutronYield	B. Faddegon, J. Ramos-Méndez		
Production cross sections of different fragments	C12FragCC	C. Omachi, T. Toshito, T. Sasaki		
62 MeV /n C-12 fragmentation on Carbon target	LowEC12Frag	C. Mancini-Terracciano		
400 MeV/n C-12 fragmentation	C12Frag	D. Bolst, S. Guatelli, F. Romano		
Estimation of proton radiobiological damage	LowEProtonRBE	G. Petringa, GAP Cirrone L. Pandola, G. Cuttone		
Light ion (proton, 3He, carbon) range and depth dose curves in water	LightIonBraggPeak	M. Cortes-Giraldo, A. Perales, J. M. Quesada Molina		

Tested Geant4 Physics Constructors and Lists

Electromagnetic Physics Constructors

- **G4EmStandardPhysics** (a.k.a. "option0")
 - Usually used as reference by Geant4 physics developers for high-energy physics.
- G4EmStandardPhysics_option3 ("EMY" suffix in physics list naming convention)
 - Based of G4EmStandardPhysics with more accurate settings to model dE/dx, nuclear stopping & fluorescence.
- G4EmStandardPhysics_option4 ("EMZ" suffix)
 - Deemed to be the most accurate combination of Geant4 models, regardless of CPU efficiency.
- G4EmLivermorePhysics ("LIV" suffix)
 - Includes data-driven low-energy models for e⁻ ionization and γ based on the Livermore evaluated data libraries.
- G4EmPenelopePhysics ("PEN" suffix)
 - Includes low-energy models for e⁻, e⁺ & γ re-engineered from PENELOPE code

EM Physics Lists (CH)

Geant4	$Opt \theta$	Opt3	Op 14	Livermore	Penelope	
Rayleigh	Livermore					
scattering and						
photoelectric						
effect						
Compton	Standard	G4KleinNishinaModel	G4Low EPC omp ton Model [18]	Livermore	Penelope	
scattering			for $E < 20 MeV$ *	for $E < 1 GeV$ *	for $E < 1 GeV$ *	
Gamma	Standard	Standard	Penelope for $E < 20 MeV$	G4BetheHeitler5DModel [19],	Penelope	
conversion			Standard for $E > 20 M eV$	for $E < 1 GeV$,	for $E < 1 GeV$,	
				Standard	Standard	
				for $E > 1 GeV$	for $E > 1 GeV$	
e ⁻ and e ⁺	Standard	Standard	Livermore for e^- for $E < 100 keV$,	Livermore for $E < 100 keV$	Penelope	
ionisation			Penelope for e^+ for $E < 100 k eV$,	Standard for $E > 100 keV$		
			Standard for $E > 100 keV$			
e ⁻ and e ⁺	Standard	G4Seltz erBergerModel for $E < 1GeV$,			Penelope	
bremsstrahlung		G				
e ⁺ annihilation		Standard Penelope				
e ⁻ and e ⁺	Urban model [20]	Default model	Goudsmit-Saunderson model [21], [22] for $E < 100 M eV$			
multiple	for $E < 100 M eV$,					
scattering	Wentzel					
	for $E > 100 M eV$					
Coulomb	on	off	on			
Scattering						
Msc Step Limiting	fUseSafety	fUseDistanceToBoundary	fUseSafetyPlus	fUseSafetyPlus	fUseSafetyPlus	
Type						
Brensstrahlung	ModifiedTsai		2BS		Penelope	
angular	-				-	
distribution						

Brachytherapy test

- Based on the Advanced Example brachytherapy
- ¹⁹²Ir Flexisource (HDR brachytherapy)

- Comparison against D. Granero, et al, (2006) Med. Phys. 33 (12), pp: 4578-82.
- Agreement within 2σ with reference data for all EM constructors

D. Cutajar, S. Guatelli, A. Le, A. Rosenfeld University of Wollongong

Internal breast dosimetry

Phantom Slab 1 2 (1 cm Thick) 5 10 11 12 14 15 16 17 18 13 20 21 22 19 23 24 25 26 **Scoring Plane** 27 (Depth 0,1,2,3 cm) 28 29 **Compression** Plates 30 LATERAL VIEW **TOP VIEW**

- - Typical breast phantom (50% glandular 50% adipose)
 - Dose scored in 30 positions at 4 different depths
 - Comparison with experimental measurements (TLDs) at 20 keV

- Agreement within 1σ with the experimental measurements
- Best performance (on average) with "Opt4"
- Performance of "Opt 0" worsens with increasing depth

C. Fedon et al., "Internal breast dosimetry: monoenergetic" Med. Phys. 45 (2018) C. Fedon et al., "Internal breast dosimetry: spectrum" Med. Phys. 45 (2018)

C. Fedon and I. Sechopoulos, Radboudumc (NL)

TLD Position

Tested Geant4 Physics Constructors and Lists

Hadronic Physics Constructors

For proton therapy

- QGSP_BIC_HP
 - G4EmStandardPhysics_option4 is used by default since Geant4-10.5.
- QGSP_BIC_EMY is same as previous, but...
 - No HP libraries for neutrons.
 - G4EmStandardPhysics_option3 is used.
- **QGSP_BERT_HP** differs from QGSP_BIC_HP in:
 - EM interactions are modeled with "option0".
 - For incident <u>p & n</u>, Bertini model (own Precompound+Evaporation) is used for hadronic inelastic scattering.

For carbon ion therapy:

- G4IonBinaryCascade LightIonBinaryCascade model.
- G4IonQMDPhysics Quantum Molecular Dynamics (QMD) model.
- G4IonINCLXXPhysics Liège Intranuclear-Cascade model (INCL).

Partial Hadronic Model Inventory – important for particle therapy

12

300 MeV/n ¹²C ion charge-changing cross section

Authors: C. Omachi (Nagoya Proton Therapy Center, Nagoya, Japan, T. Sasaki (KEK, Japan), T. Toshito (Nagoya Proton Therapy Center, Nagoya, Japan)

Experimental data obtained with an emulsion plate in the NIRS P152 experiment: Toshito et al 2007, Physical Review C, 75(5):054606, 2007.

Bragg Curves in Water for Proton & C-12 Beams at Therapy Energies

- Initial energy spread adjusted from experimental Bragg curves.
- Simplified geometry model for simulation
 - Depths of 82% distal level are compared.
- "option0" not accurate enough for ¹²C, other EM constructors agree within 2-3 sigma.
- For proton beams, all physics constructors agree within experimental uncertainties.

Fragment Yields for ¹²C @ 400 MeV/u on Water Target

INCL++ reproduced better angular distribution, but QMD & BIC provided better energy distributions.

D. Bolst et al., NIM A 869 (2017) Ref. Data: E. Haettner et al., Phys. Med. Biol. 58 (2013)

Test on cell survival curve modelling for proton therapy

Authors: G.A. P. Cirrone, G. Cuttone and G. Petringa, INFN LNS, Catania, Italy

- Reproduce in-vitro cell survival curves against experimental measurements, performed at the CATANA facility
 - at 20 mm depth in water, corresponding to the mid of a clinical 62 MeV modulated clinical proton beam
 - prostate DU145 cells and breast cancer cell line MDA-MB-231
 - Using Geant4 and LEM III
 - Against exp data (G. Petringa, et al., Physica Medica, vol. 58, pp. 72-80, 2019.

Documented in: G. Petringa, et al., "Radiobiological quantities in proton-therapy: Estimation and validation using geant4based monte carlo simulations", Physica Medica, vol. 58, pp. 72-80, 2019.

Conclusions & Outlook

- Currently, 18 tests have been included in G4_Med to benchmark EM and Hadronic physics capabilities of Geant4 for medical physics applications.
 - Some test physical quantities, others include more realistic scenarios.
- **G4_Med** is integrated in **geant-val** for regular executions on the CERN computing infrastructure.
- Overall, *G4EmStandardPhysics_option4* (_EMZ) is recommended for accurate simulations.
- **QGSP_BIC_HP** (_EMZ) physics list provides a good overall description.
- Future work will focus in two main aspects:
 - Inclusion of new tests and refinement of existing ones.
 - Assessment of the different physics list choices in terms of accuracy and CPU performance across future releases of the Geant4 toolkit.
- More information at our TWiki page: <u>https://twiki.cern.ch/twiki/bin/view/Geant4/G4MSBG</u>
- Paper accepted as a Special Issue of Medical Physics,

Thank you