

Patient Specific Dose Calculation of Circulating Blood

Abdelkhalek Hammi

TU Dortmund University, Dortmund, Germany

7th Annual Loma Linda Workshop August 2-4, 2021

8/22/2021

Background

• Radiation therapy influences the patient's immune system, and the immune system influences the response to radiation therapy

- Radiation Therapy is associated with significant hematologic toxicity, including Iymphopenia
- Lymphopenia= depletion of the total peripheral lymphocyte count in the blood

Motivation: Radiotherapy Induces Immunosuppression In Cancer Patients

- Treatment-related lymphopenia has been linked to poor outcomes
- Severe lymphopenia has been associated with serious opportunistic infections.
- Prolonged, Treatment-induced lymphopenia (up to 45% of GBM patients) persists for at least one year after treatment RT.
- It is likely that irradiation of circulating lymphocytes in the peripheral blood is a major contributing factor to lymphopenia

Tang C. et al. Int J Radiat Oncol Biol Phys. 2014

Dose Calculation of the Circulating Blood

- Blood propagation dynamics
 - Spatial information of blood trajectories
 - 8% Anatomical based vessel
 - 92% generic straight lines
 - Hemodynamics
 - $v = \dot{V} * \Delta t$

Hammi A. et al. Phys. Med. Biol. 2019

Circulatory System

- Blood propagation dynamics
 - Spatial information of blood trajectories
 - 8% Anatomical based vessel
 - 92% generic straight lines
 - Hemodynamics
 - $v = \dot{V} * \Delta t$
- Blood flow model for the entire human body
 - Based on ICRP data (24 organs)
 - ICRP hemodynamic references (gender, age...)
 - Blood particle tracking (>20 Mio.)

4D Dose Calculation

• Dose scoring

$$D_{ID} = \sum_{id}^{N} \frac{\dot{d}(\vec{x}, t)}{\bar{v}(\vec{x})} \Delta x$$

- Wishlist:
 - More realistic spatial presentation of the flow evolution through the brain
 - Higher time resolution

Vascular Architecture

- Realistic vessel boundaries
 - Vessels occupy convex folds and valleys of the surface of the brain
- Brain Blood Supply
 - Carotid arteries and vertebral arteries
 - Different lobes require different blood supply
 - Communication between major arteries
 - Circle of Willis
 - Venous drainage

Extraction of vessel boundaries from MRI data

Topographic Map of Vessel Boundaries

Blood Particles Trajectories

10

Connectivity of vertexes set with the shortest distance

Patient Data

Patient Anatomy

• From generic model to "Patient Model"

Circulatory System

- 30 Compartments organs
- Model 40 Mio BPs
- $\Delta T = .2^* 10^{-3} s$

Dynamic Beam Delivery I

- Proton Pencil Beam Scanning (PBS)
 - Current ramping up-/down T = 200 ns
 - Energy step ($\Delta E \approx 2MeV$) T = 2 s
 - Sweeping magnet time

Dynamic Beam Delivery II

- Proton Pencil Beam Scanning (PBS)
 - Current intensity $I_m = 2 nA$
 - Current ramping up-/down T = 200 ns
 - Energy step ($\Delta E \approx 2MeV$) T = 2 s
 - Sweeping magnet time

- Proton Passive Scanning (PS)
 - Modulation Wheel 600 rpm
 - Modulation step ~ 2.7 ms
- Photon Therapy
 - Dose-rate
 - Beam-on time
 - Number of segments

Results: Effect of Treatment Modality

Results: Effect of Current Intensity / Dose Rate

Results: Blood Is Not A Solid Organ

SUMMARY

- Explicit 4D blood flow model including recirculation to estimate radiation dose received by the circulating blood pool
- Model is based on realistic vasculature network of the human brain
- Entire blood dilution and blood flow is considered
- Application to patient case of proton pencil beam scanning, passive scattering and photon-based delivery at various dose rates and fractionations
- Our model considers the total dose over a fractionated treatment but allow to also score cell survival after each fraction

ACKNOWLEDGEMENT

Sebastian Tattenberg

Thank you for your attention!

