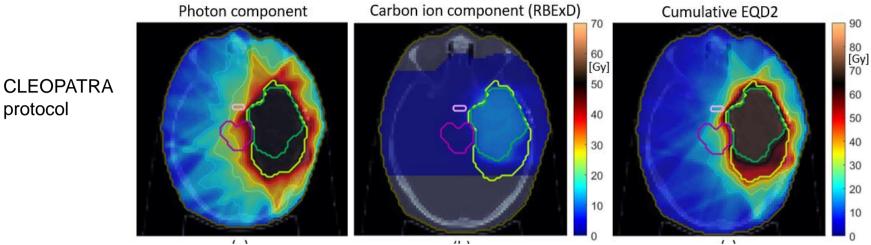
Joint optimization of photon–carbon ion treatment plans

7th Annual Loma Linda Workshop

Amit Ben Antony Bennan, Mark Bangert, Jan Unkelbach, Niklas Wahl, Oliver Jaekel

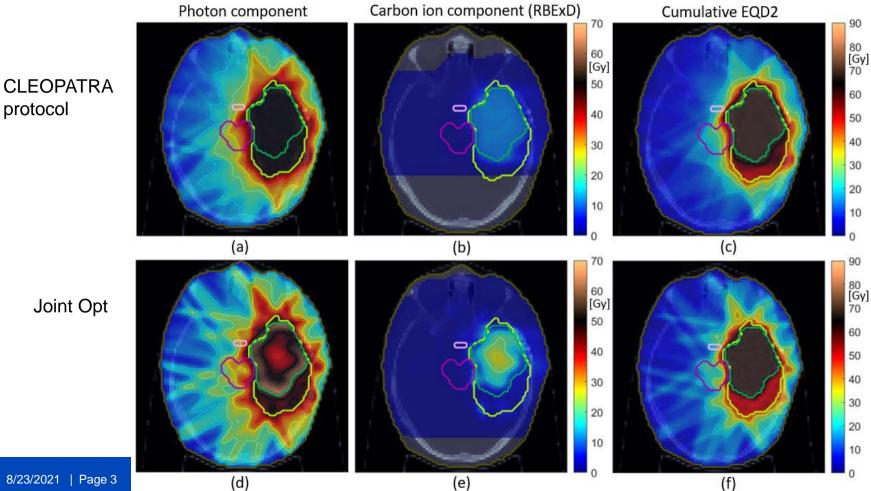


UniversitätsKlinikum Heidelberg

Mixed modality treatments

dkfz. Discussion

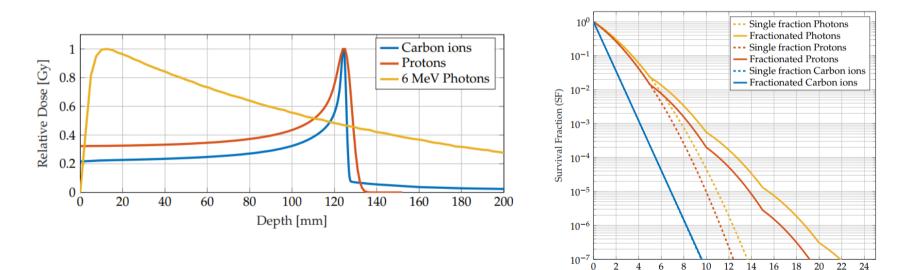
8/23/2021 | Page 2


Introduction

Materials/Methods

Results

Mixed modality treatments



8/23/2021 | Page 3

(d)

Back to the Basics

- Carbon ions = protons + sharper Bragg peak + Fragmentation tail
- RBE: Protons ~1.1, Carbon ions: varies along the beam(~3)
- Protons and photons show some predicted fractionation benefit
- Carbon ions show almost no fractionation benefit at the Bragg peak

Dose(Gy)

Rationale

- High RBE, hypoxia invariance, lower integral dose to NT
- Traditionally used for H&N, pediatric cases, lung, prostate, pancreas
- Ideally you would want to treat LARGE, HYPOXIC / RADIORESISTANT tumors with CIRT
- Downside: limited/no sparing by fractionation

RATIONALE for Carbon – photon joint optimization – Carbon ions to reduce integral dose and photons to fractionate dose to NT

Playing their strengths...

Photon – Proton combined treatments (BED)

Radiotherapy and Oncology

journal homepage; www.thegreenjournal.com

Original article

Optimization of combined proton-photon treatments

Jan Unkelbach^{a,*}, Mark Bangert^b, Karen De Amorim Bernstein^c, Nicolaus Andratschke^a, Matthias Guckenberger^a

^a Department of Radiation Oncology, University Hospital Zürich, Switzerland, ^b Department of Medical Physics in Radiation Oncology, German Cancer Resear

IOP Publishing

Phys. Med. Biol. 64 (2019) 065011 (21pp)

https://doi.org/10.1088/1

Physics in Medicine & Biology

PAPER CrossMark

RECEIVED 14 June 2018

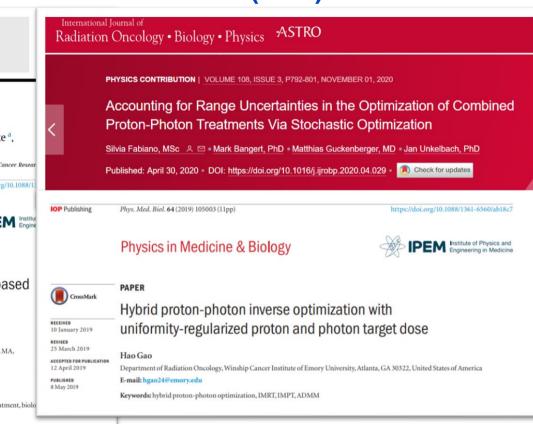
REVISED 8 January 2019

ACCEPTED FOR PUBLICATION

14 January 2019 PUBLISHED

11 March 2019

Optimal combined proton-photon therapy schemes based on the standard BED model

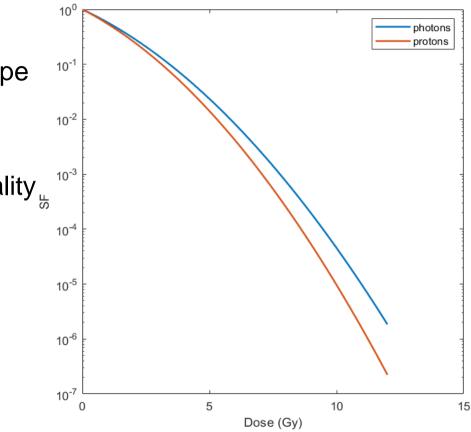

S C M ten Eikelder^{1,4}, D den Hertog¹, T Bortfeld² and Z Perkó^{2,3}

- Department of Econometrics and Operations Research, Tilburg University, Tilburg, The Netherlands
- ² Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- 3 Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands 4 Author to whom any correspondence should be addressed.

E-mail: s.c.m.teneikelder@tilburguniversity.edu

Keywords: proton therapy, intensity-modulated radiation therapy (IMRT), optimization, multi-modality treatment, biolo dose (BED)

Supplementary material for this article is available online

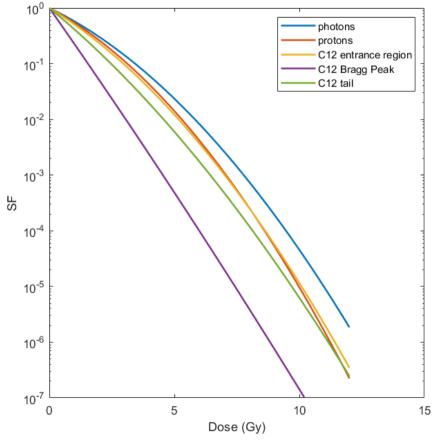


Linear Quadratic model

- Alpha / beta values describe the shape of the curve (fitting parameters)
- Depends on tissue and radiation quality $_{\mbox{\tiny b}}$

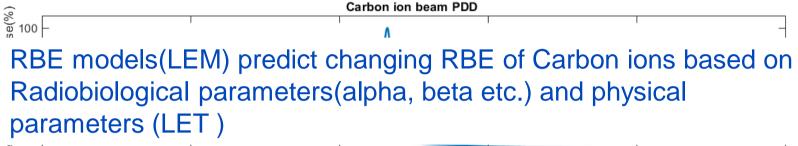
$$SF = e^{-n(\alpha d + \beta d^2)}$$
$$BED = nd(1 + \frac{d}{\alpha/\beta})$$

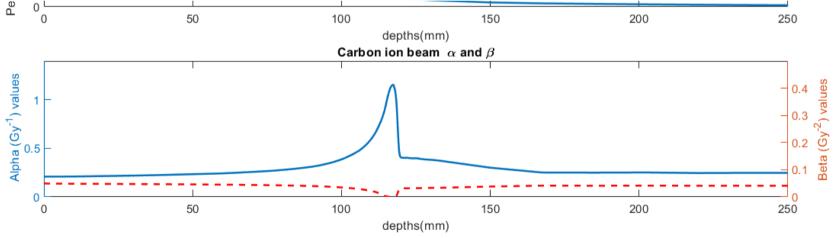
$$\varepsilon = n(\alpha d + \beta d^2)$$

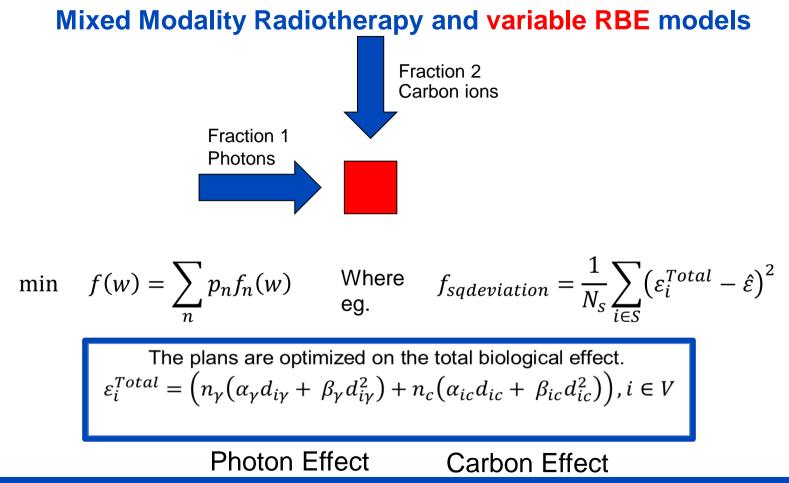

Discussion

Linear Quadratic model

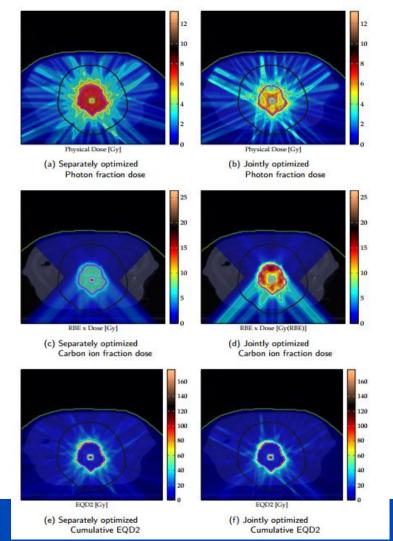
- Alpha / beta values describe the shape of the curve (fitting parameters)
- Depends on tissue and radiation quality $_{\mbox{\tiny b}}$

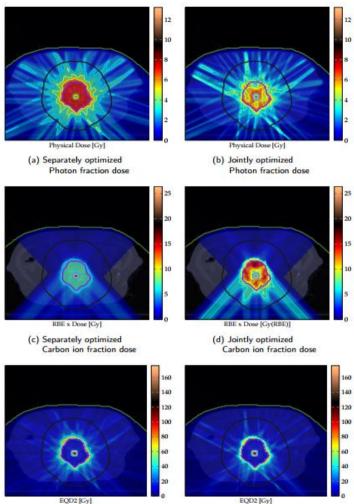

$$SF = e^{-n(\alpha d + \beta d^2)}$$
$$BED = nd(1 + \frac{d}{\alpha/\beta})$$


$$\varepsilon = n(\alpha d + \beta d^2)$$


Discussion

Challenges with Carbon ions: Carbon effective α , β depend on the position of voxel in the beam

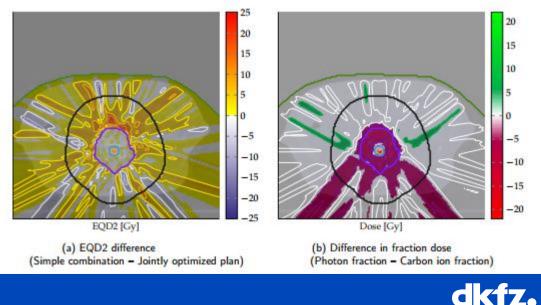


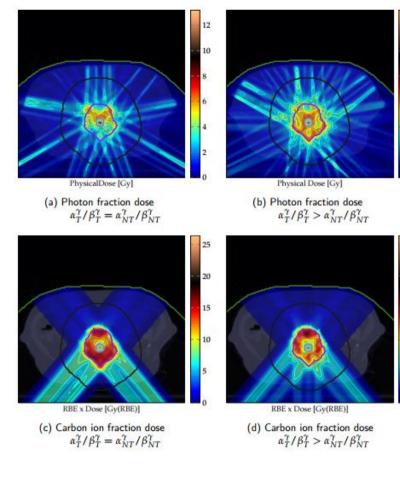

Proof of Concept

Reproduce published results
Unkelbach et al 2018

Fixed fraction allocation

- SBRT treatment
- Carbon ions: 1 fxn
- Photons: 4 fxn
- Tumor $\alpha^T / \beta^T = 0.5 / 0.05 (10 \text{Gy})$
- Healthy tissue $\alpha^{NT}/\beta^{NT} = 0.1/0.05$ (2Gy)
- Fractionation benefit: $\alpha^T / \beta^T > \alpha^{NT} / \beta^{NT}$

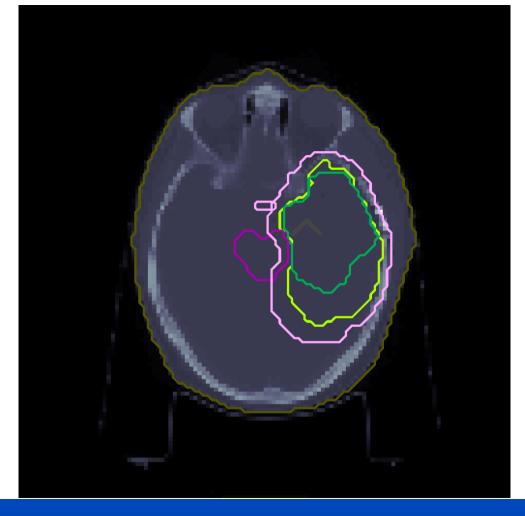



Proof of Concept

- More conformal : additional degree freedom from both modalities
- Spatial distribution of fraction dose within the target

= hypofractionation vs hyper fractionation

(e) Separately optimized Cumulative EQD2 EQD2 [Gy] (f) Jointly optimized Cumulative EQD2

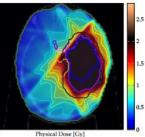

15

10

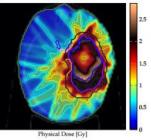
Impact of LQ model Parameter selection

- Without a fractionation benefit: $\alpha^T/\beta^T \leq \alpha^{NT}/\beta^{NT}$
- joint optimization result is based on physical dose characteristics

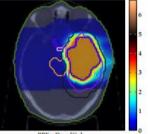
Glioblastoma

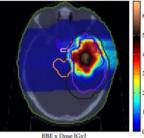

Assumption: the CTV is comprised of a combination of tumor and normal tissue.

Carbon ions : 6 fxns (18 Gy(RBE)) Photons: 25 fxns (50 Gy)

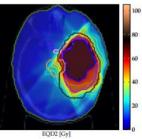

Tumor $\alpha^{T}/\beta^{T} = 0.5/0.05$ (10Gy) Healthy tissue $\alpha^{NT}/\beta^{NT} = 0.1/0.05$ (2Gy)

Prescriptions: GTV: 50 Gy + 18 Gy (boost) CTV: 50 Gy

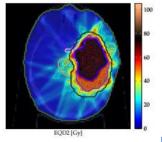




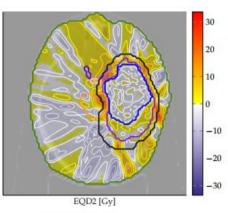
(a) Photon fraction dose Reference plan


(b) Photon fraction dose Jointly optimized plan

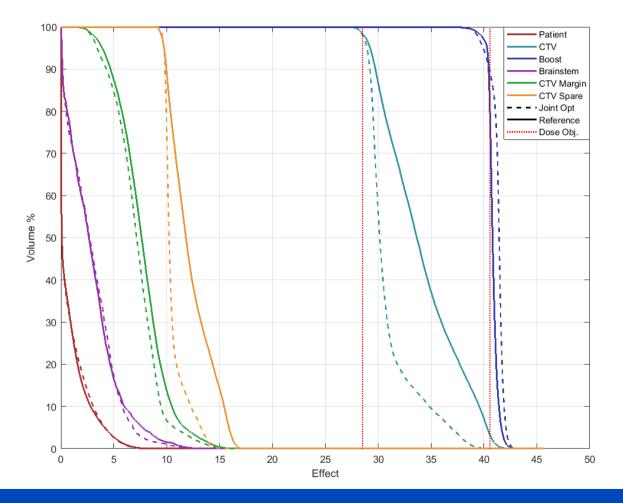
RBE x Dose [Gy]

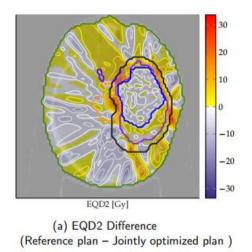

(d) Carbon ion fraction dose Reference plan

(g) Cumulative EQD2 Reference plan

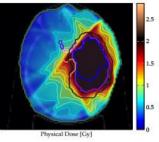

(e) Carbon ion fraction dose Jointly optimized plan

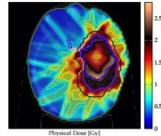
(h) Cumulative EQD2 Jointly optimized plan

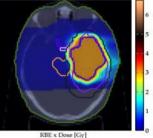

Glioblastoma


- Carbon ions at the core (almost x2)
- Photons at CTV + all interfaces with NT
- Improved Conformity

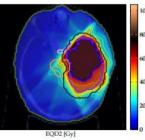
(a) EQD2 Difference (Reference plan - Jointly optimized plan)



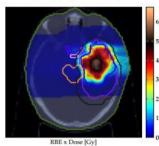



8/23/2021 | Page 16

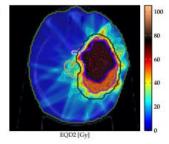
(a) Photon fraction dose Reference plan



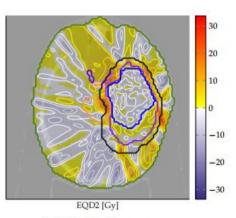
(b) Photon fraction dose Jointly optimized plan

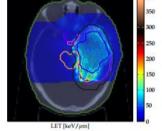


KBE x Dose [Gy]

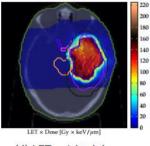

(d) Carbon ion fraction dose Reference plan

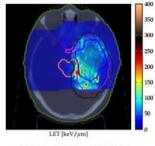
(g) Cumulative EQD2 Reference plan

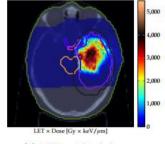

(e) Carbon ion fraction dose Jointly optimized plan


(h) Cumulative EQD2 Jointly optimized plan

Glioblastoma


Implicit redistribution of LET


(a) EQD2 Difference (Reference plan – Jointly optimized plan)


(a) Dose averaged LET Reference plan

(d) LET weighted dose Reference plan

(b) Dose averaged LET Jointly optimized plan

(e) LET weighted dose Jointly optimized plan

Assumptions / Raised questions

- LQ model describes the iso effective dose-fxn translations accurately (therefore d/fxn heterogeneity is acceptable)
- Alpha Beta values "accurately" model the radiosensitivity of the tissue : definitely not true
- Not considering robustness of the plans

PHYSICS CONTRIBUTION | VOLUME 108, ISSUE 3, P792-801, NOVEMBER 01, 2020

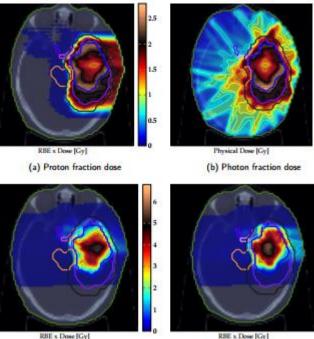
Accounting for Range Uncertainties in the Optimization of Combined Proton-Photon Treatments Via Stochastic Optimization

Silvia Fabiano, MSc 🛛 🛛 Mark Bangert, PhD Matthias Guckenberger, MD Markelbach, PhD

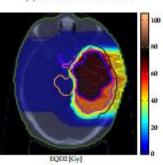
Published: April 30, 2020 • DOI: https://doi.org/10.1016/j.ijrobp.2020.04.029 • 🔍 Check for updates

Take home message – Joint optimization because...

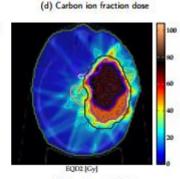
- Aim is to investigate the possibilities of mathematically combining different radiation modalities in the LQ based biological effect space.
- Physical DOF from cumulative spatial dose redistribution
- Temporal DOF from local dose per fraction modulation
- Use Photons for fractionation and sparing, use carbon ions to hypofractionate/ for high LET and reduce integral dose
- Easily incorporate other RBE models and dose accumulation models


PHYSICS CONTRIBUTION | ARTICLES IN PRESS

Joint Optimization of Photon–Carbon Ion Treatments for Glioblastoma


Amit Ben Antony Bennan, MSc 🛛 R 🖸 • Jan Unkelbach • Niklas Wahl • Patrick Salome, MSc • Mark Bangert

Open Access • Published: May 28, 2021 • DOI: https://doi.org/10.1016/j.ijrobp.2021.05.126



(c) Carbon ion fraction dose

(e) Cumulative EQD2

(f) Cumulative EQD2

Proton – Carbon ion joint optimization

- Protons are assumed to be radiobiologically similar to photons i.e. constant RBE
- Qualitatively similar to photoncarbon ion treatment

Thank you

Thank you

8/23/2021 | Page 21