Practical Implementation of pCT Algorithms

BLAKE E. SCHULTZE

BAYLOR UNIVERSITY

Presentation Topics

- 1) Hull-detection: Development for object boundary detection
- 2) MLP Formalism: Development of a computationally efficient implementation
- 3) TVS: Applying recent methodological advances in theory to pCT

pCT Data Flow

• BU pCT software performs preconditioning and image reconstruction steps

Data Acquisition, Preprocessing, & Preconditioning

Detailed description of these steps published in *IEEE Access* (2021) "Particle-tracking proton computed tomography—data acquisition, preprocessing, and preconditioning"

Data Acquisition & Preprocessing

Detailed description of these steps published in *IEEE Access* (2021) "Particle-tracking proton computed tomography—data acquisition, preprocessing, and preconditioning"

Hull-Detection

Object Boundary Detection Object boundary detection is...

- used to determine if/where a proton entered/exited the object
 used to restrict reconstruction to protons traversing object
 used to restrict the reconstruction
- o used to restrict the reconstruction image space solely to those voxels within the object

o Published: Contemporary Mathematics, Vol. 36 (2015)

"Performance of hull-detection algorithms for proton computed tomography reconstruction"

Object Boundary Detection: Advantages of Hull-Detection?

- can begin during pCT scans, i.e. online mode
- parallelizable & relatively fast (~5 seconds)
- hull can define mask for spatially filtering $x_0 \Rightarrow$ restricts image space to relevant voxels
- more reliable object entry & exit coordinates
 - key to proton path estimation
- o can identify & exclude protons missing object

Silhouette Carving (SC) Method

Fundamental
 Concepts

• Protons missing object...

- experience negligible scattering & energy loss in air
- travel along approximate straight line paths (SLP)
- identifiable by WEPL and/or angular deviation

 Voxels along SLPs can be identified & excluded from hull

 Voxels not excluded after repeating for many protons defines object hull

Silhouette Carving (SC) Method

Implementation
 Details

• Hull initialized to entire image space

 $_{\odot}$ Protons missing object identified by WEPL $\,<\,-1\,\rm{mm}$

• Voxel walk algorithm (3D-DDA) developed to identify voxels along each proton path

 Based on 2D ray marching method: digital difference analyzer (DDA)

O 3D-DDA is efficient/accurate & numerically stable

- Starting from hull encompassing image space
- Identify voxels
 intersected by 1st
 proton missing object

- Carve (remove) voxels intersected by 1st proton
- Identify voxels
 intersected by 2nd
 proton missing object

- 6) Carve (remove) voxels intersected by 2nd proton
- 7) Identify voxels intersected by 3rd proton missing object

- Repeat preceding steps for all protons missing object
- 8) Remaining voxels define object hull

Initial Simulated pCT Data Investigations

Experimental (real) pCT Data MAYLO Investigations

Thresholded Filtered Backprojection

Pediatric Head Phantom

Rectifying Observed SC Deficiency

- 1) Silhouette Carving (SC) was adapted to use binned data after removing unsuitable proton histories
- 2) Modified Silhouette Carving (MSC) algorithm developed
 - a) Counts # of times voxel identified outside object
 - b) Uses counts to identify voxels to exclude from hull
- 3) Space Modeling (SM) algorithm developed
 - a) Uses protons entering object to construct hull
 - b) Counts # of times voxel identified within object
 - c) Uses counts to identify voxels to include in hull

Experimental (real) pCT Data Investigations

Hull-Detection Viability Conclusions

 SC generated most accurate hulls, but requires unsuitable data removal & proton data binning

 MSC slightly less accurate than SC, but supports online-mode & doesn't require unsuitable data removal

 SC & MSC are viable hull-detection algorithms w/ potential for improvements

Hull-Detection: Unpublished Updates

• MSC is currently the preferred hull-detection algorithm as a result of the following developments:

- much larger (~350 million protons) data sets
- flagged protons (WEPL = -100 mm) removed & no longer interfere
- scans w/ continuous range of beamline angles

• MSC performs well under these conditions & has preferred characteristics, though it can still be improved

MLP Formalism

Efficient Computation & Data Storage

Most-Likely Path (MLP) is...

o used to approximate proton paths through object
 o used to define hyperplanes (i.e. rows of system matrix A ∈ ℝ^{m×n})
 o the most computationally expensive step of pCT

• Publication in Preparation: *IEEE Access*

"Particle-tracking proton computed tomography—image reconstruction"

Problem Size

 $m \sim 10^9$ Proton Histories $n \sim 10^7$ Image Space Voxels ~ 400 Voxels/MLP

 $A \in \mathbb{R}^{m \times n} \Rightarrow size(A) = m \cdot n = \sim 10^9 \cdot \sim 10^7 = \sim 10^{16}$ $\Rightarrow sparsity(A) = \sim 400 \cdot \frac{10^9}{10^{16}} = \sim 4 \cdot 10^{-5} = 0.040\%$

MLP

- Highly sparse A matrix
- CSR is common sparse matrix format
- Much more efficient than dense matrix storage

MLP

- FS only processes individual rows of *A* matrix
- Each row has single value path length
- More efficient to store only the indices of each voxel intersected by MLP

Intersected Voxel Identification

Current MLP Storage Scheme

MLP – Conceptual Path & Proton Coordinate System

Impact of Object Boundary Inaccuracies

Can lead to an MLP passing through different voxels

Impact of Entry/Exit Coordinate Inaccuracies

• Can lead to an MLP passing through different voxels (less severe)

• 3D-DDA used to determine exact hull entry/exit coordinates

MLP

where

Equations Before & After Coordinate System Translation + Rotation

$$\vec{y}_{\text{MLP}} = \begin{bmatrix} T_1 \\ \Theta_1 \end{bmatrix} = \left(\boldsymbol{\Sigma}_1^{-1} + \boldsymbol{R}_1^T \boldsymbol{\Sigma}_2^{-1} \boldsymbol{R}_1 \right)^{-1} \left(\boldsymbol{\Sigma}_1^{-1} \boldsymbol{R}_0 \vec{y}_0 + \boldsymbol{R}_1^T \boldsymbol{\Sigma}_2^{-1} \vec{y}_2 \right)$$
$$\vec{y}_0 = \begin{bmatrix} T_0 \\ \Theta_0 \end{bmatrix} \quad \boldsymbol{R}_0 = \begin{bmatrix} 1 & U_1 - U_0 \\ 0 & 1 \end{bmatrix} \quad \boldsymbol{\Sigma}_1 = \begin{bmatrix} \sigma_{T_1} & \sigma_{T_1 \Theta_1} \\ \sigma_{T_1 \Theta_1} & \sigma_{\Theta_1} \end{bmatrix}$$
$$\vec{y}_2 = \begin{bmatrix} T_2 \\ \Theta_2 \end{bmatrix} \quad \boldsymbol{R}_1 = \begin{bmatrix} 1 & U_2 - U_1 \\ 0 & 1 \end{bmatrix} \quad \boldsymbol{\Sigma}_2 = \begin{bmatrix} \sigma_{T_2} & \sigma_{T_2 \Theta_2} \\ \sigma_{T_2 \Theta_2} & \sigma_{\Theta_2} \end{bmatrix}$$

Coordinate System Translation + Rotation

1

$$\vec{y}_0 = \begin{bmatrix} t_0 \\ \theta_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$R_0 \vec{y}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u_2 = \cos \Theta_0 (U_2 - U_0) - \sin \Theta_0 (T_2 - T_0)$$

$$\vec{y}_2 = \begin{bmatrix} t_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \sin \Theta_0 (U_2 - U_0) + \cos \Theta_0 (T_2 - T_0) \\ \Theta_2 - \Theta_0 \end{bmatrix}$$

Simplified MLP Equations

$$\begin{aligned} \sigma_{t_1}^2(u_0, u_1) &= C(u_1) \int_{u_0}^{u_1} \frac{(u_1 - u)^2}{\beta^2(u)p^2(U)} \frac{du}{X_0} & \sigma_{t_2}^2(u_1, u_2) = C(u_2 - u_1) \left[P_1(u_2) - u_2^2 P_3(u_1) + 2u_2 P_4(u_1) - P_5(u_1) \right] \\ &= C(u_1) P_1(u_1) & \sigma_{t_2}^2(u_1, u_2) = C(u_2 - u_1) \left[P_2(u_2) - u_2 P_3(u_1) + P_4(u_1) \right] \\ &= C(u_1) P_1(u_1) & \sigma_{t_2}^2(u_1, u_2) = C(u_2 - u_1) \left[P_3(u_2) - P_3(u_1) \right] \\ &= C(u_1) P_2(u_1) & \text{where } C(U) = E_0^2 \left[1 + 0.038 \ln \left(\frac{U}{X_0} \right) \right]^2 & \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{a_0}{3} & \frac{a_1}{12} & \frac{a_2}{30} & \frac{a_3}{60} & \frac{a_4}{105} & \frac{a_5}{168} \\ 0 & \frac{a_0}{2} & \frac{a_1}{6} & \frac{a_2}{2} & \frac{a_3}{3} & \frac{a_4}{6} & \frac{a_5}{7} & 0 \\ 0 & 0 & \frac{a_0}{3} & \frac{a_1}{4} & \frac{a_5}{5} & \frac{a_5}{6} & 0 & 0 \\ 0 & \frac{a_0}{2} & \frac{a_1}{3} & \frac{a_2}{6} & \frac{a_3}{6} & \frac{a_4}{7} & \frac{a_5}{8} \\ &= C(u_1) P_3(u_1) & & \end{bmatrix} \\ &= C(u_1) P_3(u_1) & & \end{bmatrix} \end{aligned}$$

MLP Implementation

- \circ Scattering matrices $\Sigma_1\&\Sigma_2$ are either:
 - calculated at run time each iteration
 - constructed from lookup table ($\Sigma_1^{-1} \& \Sigma_2^{-1}$ as well)
- Redundant computations involving fixed (t_2, u_2) precalculated for each MLP

MLP Computational Efficiency

Impact of MLP implementation on single intranode GPU reconstructions:

- ~70% reduction in compute operations
- achieved reconstruction < 10 min clinical feasibility threshold for 1st time
- allows reconstruction times ~6 min on single GPU,
 ~2 min on 4-GPUs

TVS

Applying Modern Algorithm to pCT Total variation superiorization is...

o governed by the superiorization methodology (SM) w/ TV as cost function
o a perturbation method for reducing noise w/ minimal edge degradation

 \circ interleaved between FS steps

 preserves convergence of underlying algorithm (e.g. feasibility-seeking) if perturbation resilience is obeyed

o Published: IEEE Transactions on Medical Imaging (2020)

An Improved Method of Total Variation Superiorization Applied to Reconstruction in Proton Computed Tomography

TVS Perturbation Calculations BAYLOR & Application Impact

Modernization of TVS Algorithm Used in pCT

- TVS had been shown to benefit pCT imaging but had not been modernized
- Advances in SM led to investigations of the following changes:
 - removal of total variation reduction verification step (TVRVS)
 - added N perturbations per FS iteration
 - perturbation step-size $\beta \leftarrow \beta/2$ replaced by $\beta = \alpha^{\ell}$
 - (0 < α < 1 & $\ell \leftarrow \ell + 1$ after each perturbation)
 - added random decrease in $\ell \leftarrow \operatorname{rand}(k, \ell)$ at each FS iteration k

Experimental Results: Analysis of N

Total Variation (TV)

Total Variation (TV)

CTP404 Module

Experimental Results: Analysis of TVRVS ($\alpha = 0.5$)

CTP404 Module Total Variation vs. N After 12 Iterations

Experimental Results: Analysis of TVRVS ($\alpha = 0.75$)

CTP404 Module Total Variation vs. N After 12 Iterations $(\alpha = 0.75, \lambda = 0.0001)$ 14200 14000 Total Variation (TV) 13800 13600 13400 13200 13000 12800 12600 1 2 4 11 12 —A—NTVS, TV Check Off NTVS. TV Check On ---OTVS (a)

Experimental Results: $\mathbb{A}^{BA}_{\mathbb{V}\mathbb{N}\mathbb{V}}$ Analysis of Perturbation Kernel α

CTP404 Module

(a)

HN715 Head Phantom

(a)

Experimental Results: $\mathbb{A}^{BA}_{\mathbb{V}\mathbb{N}}$ Analysis of Perturbation Kernel α

CTP404 Module

HN715 Head Phantom

(b)

Experimental Results: Analysis of FS Relaxation λ

CTP404 Module Total Variation vs. N $(\alpha = 0.75, \lambda = 0.0001, 0.00015, 0.0002)$ 14000 13800 Total Variation (TV) 13600 13400 📥 13200 13000 12800 12600 12400 2 4 5 10 3 6 11 N Δ λ=0.0001 -Φ-λ=0.00015 -Δ-λ=0.0002 (a)

Modern TVS Conclusions

 \circ Removal of TVRVS not harmful, actually often improves TV & σ_{RSP}

○ *N* perturbations per FS iteration beneficial when $3 \le N \le 6$, w/ N = 5 optimal most often. Performance diminishes for $N \ge 7$, potentially from ℓ increasing too quickly

 \circ α > 0.5 offers increasing benefits w.r.t. TV & σ_{RSP} , but α > ~0.75 increasingly and unpredictably affects RSP convergence, ⇒ α = 0.75 recommended

 $\circ \lambda$ can potentially be increased w/o typically observed increase in noise

o future investigations of approaches to uncouple N & β (via ℓ) relationship are needed

Questions or Comments?

Blake_Schultze@baylor.edu

Acknowledgements

- National Institute of Biomedical Imaging and Bioengineering (NIBIB), the National Science Foundation (NSF), award Number R01EB013118, and the United States -Israel Binational Science Foundation (BSF) grant no. 2009012 and no. 2013003.
- The content of this presentation is solely the responsibility of the authors and does not necessarily represent the official views of NIBIB, NIH and NSF.

Robert R. Wilson, Ph.D., 1914-2000

Timeline of pCT Work & Publications

Advantages of Proton Therapy

Why pCT for Proton Therapy Treatment Planning

 Conversion of Hounsfield units (HU) to relative stopping power (RSP) adds range uncertainty

- HU-RSP conversion is especially unreliable for some materials
- Common practice 3.5% + 1 mm additional margin to nominal range of proton beam exceeds clinical/planning uncertainty margins of photon therapy
- o pCT offers ability to reconstruct RSP directly
- pCT imaging dose much lower than xCT, offering potential for weekly or even daily imaging

pCT Scanner & Data/Image Coordinate Systems

pCT

Fundamentals: Measurement Data & Resulting Linear System pCT image reconstruction yields relative stopping power (RSP) map of object

 Energy measurements converted to water-equivalent path length (WEPL) for convenience since

WEPL =
$$\int_{\text{entry}}^{\text{exit}} \text{RSP}(x, y, z) d\ell$$

$$\implies \mathbf{b}_{\mathbf{i}} = \sum_{\forall j} \mathrm{RSP}_{j} \cdot a_{ij}$$

• Linear pCT system $A\vec{x} = \vec{b}$ solved using feasibility-seeking (FS) algorithms

Feasibility-Seeking (FS)

Fully Simultaneous (Cimmino type) FS Methods:

Fully Simulataneous DROP Algorithm • FS performs iterative projections onto rows of *A*, advancing toward feasible (not exact) solution

Cimmino type
 FS algorithms
 project onto all
 m hyperplanes
 simultaneously

Fully Simultaneous
 DROP (FS-DROP)
 used herein

Data Acquisition & Preprocessing

Detailed description published in

Insert	Predicted RSP	Mean RSP	% Discrepancy	Std. Deviation
PMP	0.8770	0.8788	0.1993	0.0201
LDPE	0.9973	0.9990	0.1721	0.0182
Polystyrene	1.0386	1.0390	0.0414	0.0178
Acrylic	1.1550	1.1635	0.7285	0.0199
Delrin	1.3560	1.3532	-0.2059	0.0193
Teflon	1.8280	1.8150	-0.7161	0.0212

RSP Accuracy Achieved

FS-DROP w/ TVS

Original Object Boundary Detection Scheme

Filtered Backprojection Thresholding

Deficiencies of filtered backprojection (FBP) thresholding:

- FBP images noisy & artifact prone due to inappropriate SLP projections
- difficult to select RSP threshold
- produces object interior "holes" where material RSP < threshold
- not useful for excluding voxels outside object
- o slow & cannot be performed until FBP

complete

Silhouette Carving (SC) Method

3D-DDADevelopment

 O 3D-DDA based on 2D ray marching method digital difference analyzer (DDA)

 Fundamentally different than binary decision based steps of 2D algorithms

Developed numerically stable 3D-DDA,
 was initially prone to numerical error

Efficiently & accurately identifies
 intersected voxels and intersection
 coordinates