

PROTON RADIOGRAPHY WITH A MONOLITHIC PLASTIC SCINTILLATOR AND DIGITAL CAMERA PRELIMINARY STUDIES

Daniel Robertson, PhD

7th Annual Loma Linda Workshop on Particle Imaging and Radiation Therapy 2 August 2021

ACKNOWLEDGEDMENTS

Sam Beddar

- Fahed Alsanea
- Chinmay Darne
- Nathaniel Fredette
- Rajesh Panthi
- Luis Perles
- Irwin Tendler

Charles-Antoine Collins Fekete

- Ryan Fullarton
- Mikael Simard

OUTLINE

- 1. Sources of inspiration
- 2. Motivation for this approach
- 3. Detector description
- 4. Simulation studies
- 5. Experiments

1

INSPIRATION

Phys. Med. Biol. 62 (2017) 5652-5667

https://doi.org/10.1088/1361-6560/aa780b Performance characterization of a 3D liquid scintillation detector for discrete spot scanning proton beam systems

Chinmay D Darne¹, Fahed Alsanea¹, Daniel G Robertson², Narayan Sahoo¹ and Sam Beddar^{1,3}

y-projection

(b)

Phys. Med. Biol. 59 (2014) 4477-4492

3D reconstruction of scintillation light emission from proton pencil beams using limited viewing angles—a simulation study

CheukKai Hui¹, Daniel Robertson^{1,2} and Sam Beddar^{1,2}

doi:10.1088/0031-9155/59/16/4477

©2021 Mayo Foundation for Medical Education and Research | slide-6

9th International Conference on 3D Radiation Dosimetry

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 847 (2017) 012005 doi:10.1088/1742-6596/847/1/012005 Patient-specific quality assurance for spot scanning proton beams using a large-volume liquid scintillator detector

D Robertson and **S** Beddar

The Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Figure 2. Beam's-eye view (top) and lateral (bottom) projections of a single energy layer of a prostate treatment plan, calculated using a Monte Carlo dose engine (left) and measured with a liquid scintillator detector (right).

Phys. Med. Biol. 61 (2016) 4156-4167

Development of proton CT imaging system using plastic scintillator and CCD camera

Sodai Tanaka¹, Teiji Nishio^{2,3}, Keiichiro Matsushita², Masato Tsuneda⁴, Shigeto Kabuki⁵ and Mitsuru Uesaka⁶

Physics in Medicine & Biology

PAPER

Improved proton CT imaging using a bismuth germanium oxide scintillator

Sodai Tanaka¹, Teiji Nishio², Masato Tsuneda^{3,4}, Keiichiro Matsushita⁵, Shigeto Kabuki⁶ and Mitsuru Uesaka⁷

Physics in Medicine & Biology

TANAKA ET AL. (2018)

TANAKA ET AL. (2018)

yo Foundation for Medical Education and Research | slide-10

WATER EQUIVALENT THICKNESS ESTIMATION VIA SPARSE DECONVOLUTION OF PROTON RADIOGRAPHY DATA

2

MOTIVATION CLINICAL AND TECHNICAL

CLINICAL MOTIVATION

- Stopping power uncertainty
 - Decrease range uncertainty margins
 - Utilize distal edge of Bragg peak for organ sparing
- Image guidance
 - Beam's-eye-view image
 - Volumetric imaging at isocenter
- Adaptive radiation therapy
 - Detect changes in patient/tumor anatomy over the course of treatment

TECHNICAL MOTIVATION

WHY SCINTILLATORS AND DIGITAL CAMERAS?

- It's what we know
- Simplicity and cost
 - "Off-the-shelf" electronics
 - Few components
 - Simple assembly and operation

Clinical integration

- Clinical beam delivery mode (no beam tuning for low fluence)
- Fewer detector elements (distal only)

3

DETECTOR DESIGN

DETECTOR DESIGN

- Plastic scintillator
 - Green color to match camera spectral sensitivity
 - 20x20x20 cm³
- Andor CCD cameras (2)
 - Beam's-eye-view
 - Lateral view (PDD)

DETECTOR DESIGN

SAMPLE RAW DATA

RADIOGRAPH RECONSTRUCTION METHOD

4

SIMULATION STUDIES

Physics in Medicine & Biology

PAPER

RECEIVED 31 October 2020

REVISED 16 June 2021

ACCEPTED FOR PUBLICATION

CrossMark

18 June 2021

PUBLISHED 9 July 2021 Image quality evaluation of projection- and depth dose-based approaches to integrating proton radiography using a monolithic scintillator detector

Irwin Tendler¹, Daniel Robertson², Chinmay Darne¹, Rajesh Panthi¹, Fahed Alsanea¹, Charles-Antoine Collins-Fekete³ and Sam Beddar^{1,4,*}

MONTE CARLO SIMULATION STUDY

Geant4

- 30x30x30 cm³ scintillator
- 4 image reconstruction methods:
 - List-mode PR binned at the rear tracker
 - Collins-Fekete et al 2016, 2020
 - Depth dose profile ranging
 - Naive (no optimization)
 - Curvelet minimization (Deffet et al 2020)

Distal projection —

Distance along profile

Education and Research | slide-23

Distance along profile

1 and Research | slide-24

5

EXPERIMENTAL STUDIES

Published in final edited form as: Biomed Phys Eng Express. 2019 July ; 5(4): . doi:10.1088/2057-1976/ab2e4a.

A proton imaging system using a volumetric liquid scintillator: a preliminary study

Chinmay D Darne¹, Fahed Alsanea^{1,2}, Daniel G Robertson³, Fada Guan¹, Tinsu Pan^{2,4}, David Grosshans⁵, Sam Beddar^{1,2}

lical Education and Research | slide-27

EXPERIMENTAL STUDIES

• Detector setup:

- 20x20x20 cm3 plastic scintillator
- 2 CCD cameras (lateral and beam'seye-view)
- Scanning proton beam
 - MD Anderson G3 (large spot size)
 - Clinical beam mode
- CIRS Hounsfield Unit phantom plugs
 - Solid water, adipose, cortical bone, lucite
- Image reconstruction methods
 - PDD range with curvelet optimization
 - Distal projection

IMAGE QUALITY COMPARISON

PROTON BEAM SPACING

2.5 mm

5 mm

10 mm

WET ACCURACY

Material	Distal Projection	PDD Range w/ Optimization	Beam Spacing (mm)	Distal Projection	PDD Range w/ Optimization
Solid water	-0.18 (±0.35) %	-0.29 (±3.11) %			
Adipose	-0.11 (±0.51) %	-0.15 (±2.64) %	2.5	0.02 %	-0.2 %
Cortical bone	-2.94 (±1.20) %	-0.75 (±6.11) %	5	-0.75 %	0.45 %
Lucite	-1.65 (±0.35) %	0.36 (±3.93) %	10	1.43 %	0.44 %

QUESTIONS & ANSWERS

