
A Comparison of String 
Averaging and Component 
Averaged Row Projection 
Algorithms Used in Image 

Reconstruction
Eli Brottman

In Collaboration With: Yair Censor, George Coutrakon, Reinhard Schulte



Background

● Problem statement: Compare experimental convergence rates of string averaging 
projections (SAP) and component averaged row projections (CARP), when relaxation 
parameter, string length, and sparsity are varied, with the goal of optimizing the 
relaxation parameter choice.

● Originally an undergraduate extracurricular project, funded by the NIU Office of Student 
Engagement and Experiential Learning.

● It is now being worked on as a transition toward PhD programs in applied mathematics 
or a related field.



Introduction

● When reconstructing an image, a linear system of the form Ax = b is used, where A_{ij} 
represents the length of track of proton i through voxel j, b represents the water 
equivalent path length vector, and x represents the relative stopping power (RSP) 
vector.

● Since each track only passes through relatively few voxels, the matrix A is very sparse.

● Iterative algorithms, mainly variations of the algebraic reconstruction technique (ART), 
are used to solve for x from known A and b.



Methods

● Use small, noiseless system of equations (10000 x 300 matrix for A), with a known 
solution; the ratio of voxels to tracks is approximately equal to that used in the much 
larger systems used in pCT reconstruction.

● A known solution, x, is generated randomly with all components between 0 and 2, to be 
consistent with actual RSP values. 

● Similarly, components of A are between 0 and 2, consistent with approximate path 
lengths (in mm) in 1 mm^3 voxels. Every row has the same sparsity.



Algorithms: SAP and CARP

● When applying the iterative algorithms, we let x^0, the starting 
value of x, to be (1, 1, …, 1).

● For our experiments with SAP, we used equal weights for each 
string, and therefore equal weights for each component, as well.

● CARP weights each component based on information about the 
sparsity of each column of A corresponding to the components.



Results: SAP with 90% sparsity

● The percent error is defined by

where x^k is the current iterate and x is the true solution (formula adopted by Penfold 
and Censor in 2015 pCT paper).



Results: SAP with 90% sparsity (continued)

● For some values of the relaxation parameter lambda, rapid initial convergence is 
observed for all choices of numbers of strings.

● The preferred values of the relaxation parameter (for the values we tested) tend to be 
between between 0.3 and 1.5, with more variation in convergence rates when there 
were more strings.

● Because we typically reach a clinically reasonable error after relatively few iterations, 
there is more work to be done to determine how the relaxation parameter and string 
length should be chosen.



Results: SAP with 99.67% sparsity
● Here, each track passes through exactly 1 voxel.

● Convergence takes longer, but adequate accuracy is achieved in about the same 
amount of time.



Preliminary results: CARP, 99.67% sparsity

● For many values of lambda, the error diverges; for values near 1.0, there is 
convergence, but the error is still so large as to eliminate any chance of practical use.

● A good way to rectify this is likely to use larger systems of equations, which will also 
allow for the greater sparsity used in practice.



Additional Results: SAP and CARP

● In situations with low sparsity or few strings, CARP performs equivalently to SAP, since 
there will be a nonzero component of A in each column in every string.

● Because CARP frequently performs equivalently to SAP in small systems, it was 
difficult to detect the computational advantages of CARP, especially with the small 
system used here.

● If every equation is placed into a single string, then we get the well-known algorithm 
ART from SAP.



Future work

● Use larger, sparser systems, more consistent with practical use, for SAP and CARP.

● Compare to CARP-Conjugate Gradient (CARP-CG), and systems with noise.

● Vary relaxation parameter from iteration to iteration, or consider values outside the 
interval (0, 2) that is typically used.

● The end goal is to select the optimal relaxation parameter for fast convergence and low 
runtime, and develop an understanding of what parameters are most likely to impact 
the optimal relaxation parameter for each algorithm used.



Acknowledgements

Dr. Christina Sarosiek



Thank you!

Questions?


