Assessment of the impact of CT calibration procedures for proton therapy planning on paediatric patients

Dr Esther Bär Dr Charles-Antione Collins-Fekete, Vasilis Rompokos, Dr Mark Gaze, Ying Zhang, Alison Warry, Andrew Poynter, Prof Gary Royle

University College London Hospitals **NHS Foundation Trust**

RSP estimation from CT images is currently • done using either tissue substitutes or the **stoichiometric calibration** [1,2]

[1] Schneider, U., Pedroni, E. and Lomax, A., 1996. The calibration of CT Hounsfield units for radiotherapy treatment planning. *Physics in Medicine & Biology*, 41(1), p.111. [2] Taasti, V.T., et al., 2018. Inter-centre variability of CT-based stopping-power prediction in particle therapy: survey-based evaluation. Physics and imaging in radiation oncology, 6, pp.25-30.

- RSP estimation from CT images is currently • done using either tissue substitutes or the stoichiometric calibration [1,2]
- Stoichiometric calibration is based on • reference tissues from an adult population [3,4]

Body tissue	Elen	enta	l con	Densities				
				Mass	Electron			
	Н	С	N	0	Elements with $Z > 8$	kg m ^{−3}	el. kg ^{-1} × 10 ²⁶	el. m $\times 10^2$
Adipose tissue 1	11.2	51.7	1.3	35.5	Na(0.1), S(0.1), Cl(0.1)	970	3.342	3241
Adipose tissue 2	11.4	59.8	0.7	27.8	Na(0.1), S(0.1), Cl(0.1)	, 950	3.347	3180
Adipose tissue 3	11.6	68.1	0.2	19.8	Na(0.1), S(0.1), Cl(0.1)	´ 930	3.353	3118
Adrenal gland	10.6	28.4	2.6	57.8	P(0.1), S(0.2), Cl(0.2), K(0.1)	1030	3.324	3424
Aorta	9.9	14.7	4.2	69.8	Na(0.2), P(0.4), S(0.3), K(0.1), Ca(0.4)	1050	3.304	3469
Blood-erythrocytes	9.5	19.0	5.9	64.6	P(0.1), $S(0.3)$, $Cl(0.2)$, $K(0.3)$, Fe (0.1)	1090	3.291	3588
Bloodplasma	10.8	4.1	1.1	83.2	Na(0.3), S(0.1), Cl(0.4)	1026	3.330	3417
Blood-whole	10.2	11.0	3.3	74.5	Na(0.1), P(0.1), S(0.2), Cl(0.3), K(0.2), Fe(0.1)	1060	3.312	3511
Brain—cerebrospinal fluid	11.1	_	_	88.0	Na(0.5), Cl(0.4)	1010	3.339	3373
Brain-grev matter	10.7	9.5	1.8	76.7	Na(0.2), P(0.3), S(0.2), Cl(0.3), K(0.3)	1040	3.327	3460
Brain-white matter	10.6	19.4	2.5	66.1	Na(0.2), P(0.4), S(0.2), Cl(0.3), K(0.3)	1040	3.324	3457
Connective tissue	9.4	20.7	6.2	62.2	Na(0.6), S(0.6), Cl(0.3)	1120	3.288	3683
Eve lens	9.6	19.5	5.7	64.6	Na(0.1), P(0.1), S(0.3), Cl(0.1)	1070	3.295	3525
Gallbladder-bile	10.8	6.1	0.1	82.2	Na(0.4), Cl(0.4)	1030	3.330	3430
Gastrointestinal tract— small intestine (wall)	10.6	11.5	2.2	75.1	Na(0.1), P(0.1), S(0.1), Cl(0.2), K(0.1)	1030	3.325	3424
Gastrointenstinal tract-	10.4	13.9	2.9	72.1	Na(0.1), P(0.1), S(0.2), Cl(0.1), K(0.2)	1050	3.319	3485
Heart 1	10.3	17.5	3.1	68.1	Na(0.1), P(0.2), S(0.2), Cl(0.2), K(0.3)	1050	3,315	3481
Heart 2	10.4	13.9	2.9	71.8	Na(0.1), P(0.2), S(0.2), Cl(0.2), K(0.3)	1050	3.318	3484
Heart 3	10.4	10.3	2.7	75.6	Na(0.1), P(0.2), S(0.2), Cl(0.2), K(0.3)	1050	3.318	3484
Heart-blood filled	10.3	12.1	3.2	73.4	Na(0.1), P(0.1), S(0.2), Cl(0.3), K(0.2), Fe(0.1)	1060	3.315	3514
Kidney 1	10.2	16.0	3.4	69.3	Na(0.2), P(0.2), S(0.2), Cl(0.2), K(0.2), Ca(0.1)	1050	3.312	3478
Kidney 2	10.3	13.2	3.0	72.4	Na(0.2), P(0.2), S(0.2), Cl(0.2), K(0.2), Ca(0.1)	1050	3.315	3481
Kidney 3	10.4	10.6	2.7	75.2	Na(0.2), P(0.2), S(0.2), Cl(0.2), K(0.2), Ca(0.1)	1050	3.318	3484
Liver 1	10.3	15.6	2.7	70.1	Na(0.2), P(0.3), S(0.3), Cl(0.2), K(0.3)	1050	3.315	3480
Liver 2	10.2	13.9	3.0	71.6	Na(0.2), P(0.3), S(0.3), Cl(0.2), K(0.3)	1060	3.312	3511
Liver 3	10.1	12.6	3.3	72.7	Na(0.2), P(0.3), S(0.3), Cl(0.2), K(0.3)	1070	3.309	3541
Lung-parenchyma	10.3	10.1	2.9	75.5	Na(0.2), P(0.2), S(0.3), Cl(0.3), K(0.2)	1050	3.315	3481
Lung-blood-filled	10.3	10.5	3.1	74.9	Na(0.2), P(0.2), S(0.3), Cl(0.3), K(0.2)	1050*	3.315	3481

THE ELEMENTAL COMPOSITIONS OF THE BODY TISSUES

TABLE III

[3] Woodard, H.Q. and White, D.R., 1986. The composition of body tissues. The British journal of radiology, 59(708), pp.1209-1218.

[4] White, D.R., Woodard, H.Q. and Hammond, S.M., 1987. Average soft-tissue and bone models for use in radiation dosimetry. The British journal of radiology, 60(717), pp.907-913.

- RSP estimation from CT images is currently • done using either tissue substitutes or the stoichiometric calibration [1,2]
- Stoichiometric calibration is based on • reference tissues from an adult population [3,4]
- Paediatric tissues: 'Both soft tissues and skeletal tissues exhibit a reduction in water content with increasing age.' (ICRP report 46) [5,6]

Body tissue

	Elemental composition (% by mass)										
	н	с	N	0	Na	Р	s	Cl	к	Others	kg
Adipose tissue ^a		\square									
Newborn 1	1.1	20.5	0.9	67.2				0.1			10
Newborn 2		29.7	0.9	58.0				0.1			9
Newborn 3		39.0	0.9	48.6				0.1			- 9
Infant (2 days-10 months) 1		31.0	1.1	56.5				0.1			9
Infant (2 days-10 months) 2		39.2	0.9	48.4				0.1			9
Infant (2 days-10 months) 3		47.3	0.6	40.4				0.1			9
Child (1-18 years) 1		34.7	0.8	53.0				0.1			9
Child (1-18 years) 2		44.5	0.6	43.3				0.1			9
Child (1-18 years) 3		54.3	0.5	33.4				0.1			9
Adult 1		51.7	1.3	35.5				0.1			9
Adult 2		59.8	0.7	27.8				0.1		L	9
Adult 3		68.1	0.2	19.8				0.1			9
)								
Blood—whole											
Fetus (20 weeks)	10.5	7.3	2.2	79.2	0.1	0.1	0.1	0.2	0.2	Fe (0.1)	10-
Newborn	10.0	13.1	4.0	72.0	0.1	0.1	0.2	0.2	0.2	Fe (0.1)	10
Infant (1 week)	10.1	12.2	3.7	73.1	0.1	0.1	0.2	0.2	0.2	Fe (0.1)	10
Infant (6–12 months)	10.4	9.1	2.8	76.8	0.1	0.1	0.2	0.2	0.2	Fe (0.1)	10
Adult	10.2	11.0	3.3	74.5	0.1	0.1	0.2	0.3	0.2	Fe (0.1)	10
Brain-whole											
Fetus (14 weeks)	10.9	3.3	0.7	84.2	0.2	0.2		0.3	0.2		10
Newborn	10.8	5.5	1.1	81.6	0.2	0.3	0.1	0.2	0.2		10
Infant (18 months)	10.7	9.1	1.6	77.6	0.2	0.3	0.1	0.2	0.2		10
Adult	10.7	14.5	2.2	71.2	0.2	0.4	0.2	0.3	0.3		10

[5] White, D.R., Widdowson, E.M., Woodard, H.Q. and Dickerson, J.W.T., 1991. The composition of body tissues.(II) Fetus to young adult. The British journal of radiology, 64(758), pp.149-159. [6] White, D.R., Griffith, R.V. and Wilson, I.J., 1992. Report 46. Journal of the International Commission on Radiation Units and Measurements.

- RSP estimation from CT images is currently done using either tissue substitutes or the stoichiometric calibration [1,2]
- Stoichiometric calibration is based on reference tissues from an adult population [3,4]
- Paediatric tissues: 'Both soft tissues and skeletal tissues exhibit a reduction in water content with increasing age.' (ICRP report 46) [5,6]
- We aim to evaluate **dose and range errors** • in paediatric proton therapy arising from a calibration curve created with reference tissues representing an adult population.

Body tissue

	Elemental composition (% by mass)										
	н	с	N	0	Na	Р	s	Cl	к	Others	kg
Adipose tissue ^a		\square		\square							
Newborn 1	÷	20.5	0.9	67.2				0.1			10
Newborn 2		29.7	0.9	58.0				0.1			9
Newborn 3		39.0	0.9	48.6				0.1			- 9
Infant (2 days-10 months) 1		31.0	1.1	56.5				0.1			9
Infant (2 days-10 months) 2		39.2	0.9	48.4				0.1			9
Infant (2 days-10 months) 3		47.3	0.6	40.4				0.1			9
Child (1-18 years) 1		34.7	0.8	53.0				0.1			9
Child (1-18 years) 2		44.5	0.6	43.3				0.1			9
Child (1-18 years) 3		54.3	0.5	33.4				0.1			9
Adult 1		51.7	1.3	35.5				0.1			9
Adult 2		59.8	0.7	27.8				0.1		L	9
Adult 3		68.1	0.2	19.8				0.1			9
)								
Blood—whole											
Fetus (20 weeks)	10.5	7.3	2.2	79.2	0.1	0.1	0.1	0.2	0.2	Fe (0.1)	10-
Newborn	10.0	13.1	4.0	72.0	0.1	0.1	0.2	0.2	0.2	Fe (0.1)	10
Infant (1 week)	10.1	12.2	3.7	73.1	0.1	0.1	0.2	0.2	0.2	Fe (0.1)	10
Infant (6–12 months)	10.4	9.1	2.8	76.8	0.1	0.1	0.2	0.2	0.2	Fe (0.1)	10
Adult	10.2	11.0	3.3	74.5	0.1	0.1	0.2	0.3	0.2	Fe (0.1)	10
Brain-whole											
Fetus (14 weeks)	10.9	3.3	0.7	84.2	0.2	0.2		0.3	0.2		10
Newborn	10.8	5.5	1.1	81.6	0.2	0.3	0.1	0.2	0.2		10
Infant (18 months)	10.7	9.1	1.6	77.6	0.2	0.3	0.1	0.2	0.2		10
Adult	10.7	14.5	2.2	71.2	0.2	0.4	0.2	0.3	0.3		10

[5] White, D.R., Widdowson, E.M., Woodard, H.Q. and Dickerson, J.W.T., 1991. The composition of body tissues.(II) Fetus to young adult. The British journal of radiology, 64(758), pp.149-159. [6] White, D.R., Griffith, R.V. and Wilson, I.J., 1992. Report 46. Journal of the International Commission on Radiation Units and Measurements.

Methods: Paediatric composition and density data

 We use recently published composition and density data for paediatric tissues (ICRP publication 143) [7].

Medium		H1	C ₆	N ₇	O ₈	Na ₁₁	Mg ₁₂	P ₁₅	S ₁₆	Cl ₁₇	K 19	Ca ₂₀	Fe ₂₆	I ₅₃	Density (g/cm ³)
1	Teeth	2.2	9.5	2.9	42.1	0.0	0.7	13.7	0.0	0.0	0.0	28.9	0.0	0.0	1.65
2	Mineral bone	4.5	15.8	4.5	51.4	0.0	0.3	7.5	0.3	0.0	15.6	0.0	0.0	0.0	1.65
3	Humeri, upper half, spongiosa	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.307
4	Humeri, lower half, spongiosa	10.4	34	3.5	51.2	0.1	0.1	0.2	0.2	0.1	0.0	0.1	0.1	0.0	1.307
5	Ulnae and radii, spongiosa	10.4	34	3.5	51.2	0.1	0.1	0.2	0.2	0.1	0.0	0.1	0.1	0.0	1.307
6	Wrists and hand bones, spongiosa	10.4	34	3.5	51.2	0.1	0.1	0.2	0.2	0.1	0.0	0.1	0.1	0.0	1.244
7	Clavicles, spongiosa	6.9	21.8	4.1	53	0.1	0.2	4.5	0.3	0.0	9.1	0.1	0.0	0.0	1.257
8	Cranium, spongiosa	6.3	19.4	4.2	53.4	0.0	0.2	5.3	0.3	0.0	10.8	0.0	0.0	0.0	1.433
9	Femora, upper half, spongiosa	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.307
10	Femora, lower half, spongiosa	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.307
11	Tibiae, fibulae, and patellae, spongiosa	7.6	24	4	52.7	0.1	0.2	3.7	0.3	0.0	7.4	0.1	0.0	0.0	1.306
12	Ankles and foot bones, spongiosa	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.244
13	Mandible, spongiosa	7.9	25.3	3.9	52.5	0.1	0.2	3.2	0.2	0.0	6.5	0.1	0.1	0.0	1.244
14	Pelvis, spongiosa	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.257
15	Ribs, spongiosa	7.9	25.2	3.9	52.5	0.1	0.2	3.3	0.3	0.0	6.5	0.1	0.0	0.0	1.244
16	Scapulae, spongiosa	7.1	22.2	4.1	52.9	0.1	0.2	4.3	0.3	0.0	8.8	0.1	0.0	0.0	1.257
17	Cervical spine, spongiosa	7.9	25.3	3.9	52.5	0.1	0.2	3.2	0.2	0.0	6.5	0.1	0.1	0.0	1.338
18	Thoracic spine, spongiosa	7.8	24.8	3.9	52.5	0.1	0.2	3.4	0.3	0.0	6.8	0.1	0.0	0.0	1.351
19	Lumbar spine, spongiosa	7.8	24.8	3.9	52.5	0.1	0.2	3.4	0.3	0.0	6.8	0.1	0.0	0.0	1.307
20	Sacrum, spongiosa	7.8	24.8	3.9	52.5	0.1	0.2	3.4	0.3	0.0	6.8	0.1	0.0	0.0	1.307
21	Sternum, spongiosa	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.245
22	Humeri and femora, upper half, medullary cavity	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.03
23	Humeri and femora, lower half, medullary cavity	7.9	25.3	3.9	52.5	0.1	0.2	3.2	0.2	0.0	6.5	0.1	0.1	0.0	1.03
24	Ulnae and radii, medullary cavity	10.4	34	3.5	51.2	0.1	0.1	0.2	0.2	0.1	0.0	0.1	0.1	0.0	1.03
25	Tibiae, fibulae, medullary cavity	7.3	23.1	4	52.8	0.1	0.2	4	0.3	0.0	8.1	0.1	0.0	0.0	1.03
26	Cartilage	9.6	9.9	2.2	74.4	0.5	0.0	2.2	0.9	0.3	0.0	0.0	0.0	0.0	1.1
27	Skin	10.4	10.6	2.9	75.3	0.2	0.0	0.1	0.2	0.3	0.0	0.1	0.0	0.0	1.1
28	Blood vessels	10.2	11	3.3	74.5	0.1	0.0	0.1	0.2	0.3	0.0	0.2	0.1	0.0	1.07
29	Oral mucosa	10.4	10.3	2.4	76.1	0.1	0.0	0.1	0.1	0.2	0.0	0.2	0.0	0.0	1.03
30	Liver	10.2	12.8	3.1	72.9	0.1	0.0	0.2	0.2	0.2	0.0	0.3	0.0	0.0	1.04
31	Pancreas	10.5	16	2.6	70	0.2	0.0	0.2	0.1	0.2	0.0	0.2	0.0	0.0	1.03
											(con	ntinue	d on	nex	t page)

Table B.1. List of media, their elemental compositions (percent by mass), and their mass densities for the newborn male phantom.

[7] ICRP, 2020. Paediatric reference computational phantoms. ICRP Publication 143. Ann. ICRP 49(1)

Methods: Paediatric composition and density data

- We use recently published composition and density data for paediatric tissues (ICRP publication 143) [7].
- Data covers 57 paediatric tissues ranging • from newborn to 15-year old.

Image taken from: ICRP, 2020. Paediatric reference computational phantoms. ICRP Publication 143. Ann. ICRP 49(1)

Methods: Paediatric composition and density data

- We use recently published composition and density data for paediatric tissues (ICRP publication 143) [7].
- Data covers 57 paediatric tissues ranging • from newborn to 15-year old.
- Use tissue information and CT spectral information to calculate **CT numbers** and reference RSPs for the tissues.

Image taken from: ICRP, 2020. Paediatric reference computational phantoms. ICRP Publication 143. Ann. ICRP 49(1)

tissues?

Q1: How well can three CT calibration methods estimate the RSPs of paediatric

Min error: -18.65% (spongy bones) Max error: 17.80% (medullary cavity tissue)

Min error: -18.65% (spongy bones) Max error: 17.80% (medullary cavity tissue)

Min error: -17.08% Max error: 20.24%

Max error: 17.80% (medullary cavity tissue)

Max error: 20.24%

Max error: 0.76%

Methods: Computational phantoms

from CT images of paediatric proton therapy patients

• Q1: What are the dose/range errors caused by erroneous RSP predictions?

To assess dose and rage errors from RSP prediction errors, we construct three computational phantoms

alivary sarcoma	Glioma						
15-year old	5-year old	K-means cluste					
1) Theoretical Stoichiometric 3) DECT	1) Theoretical 2) Stoichiometric 3) DECT	Plan optimisation stoichiometric f maps, recalculat					
MPT, 64.8 Gy	IMPT, 54 Gy	theoretical and L maps					

Results: Dose and range errors in Ewing's sarcoma phantom

- Stoichiometric calibration: Water equivalent • range overshoots of up to **5.5 mm**, overdose distal to the target exceeding 5 **Gy** (~10% of prescribed dose).
- DECT: range overshoots <1 mm, dose • errors <1 Gy.

10-year old pelvic sarcoma phantom

 $_{\rm dose}$

Relative

Delivered dose

Beam 1: 15°

Beam 2: 170°

Dose difference Delivered – SECT

 $\Delta R_{MAE} = 0.56 \pm 1.22 \text{ mm}$

 $\Delta R_{MAE}{=}0.13{\pm}0.96~mm$ $\Delta WER=1.03$ [-1.01 4.41] mm $\Delta WER=0.22$ [-0.71 0.67] mm

 $\Delta R_{MAE}{=}0.69{\pm}2.15\,mm$ $\Delta WER=1.40$ [-1.53 5.50] mm

 $\Delta R_{MAE}{=}0.10{\pm}0.76\,mm$ $\Delta WER = 0.25 [-0.85 \ 0.84] \text{ mm}$

Results: Dose and range errors in the head and neck phantoms

-0.6

-0.9

-1.2

-1.5

 $\mathbf{G}_{\mathbf{V}}$

Absolute dose difference

15-year old salivary sarcoma phantom

Delivered dose

Dose difference Delivered - DECT

 $\Delta R{=}0.14{\pm}1.42\,\mathrm{mm}$

 $\Delta R=0.06\pm0.76~\mathrm{mm}$

Beam 2: 270°

 $\Delta R=0.21\pm1.79 \text{ mm}$

5-year old glioma phantom

Delivered dose

Beam 1: 235°

Beam 2: 290°

Dose difference Delivered – SECT

 $\Delta \mathrm{R}_\mathrm{MAE}{=}0.12{\pm}0.53\,\mathrm{mm}$

 $\Delta R_{MAE}{=}0.04{\pm}0.21\,mm$

 $\Delta WER=0.19 [-0.43 \ 0.88] \text{ mm } \Delta WER=0.12 [-0.37 \ 0.40] \text{ mm}$

 $\Delta R_{MAE}{=}0.12{\pm}0.64\,mm$

 $\Delta R_{MAE}{=}0.07{\pm}0.57\,mm$

Results: Dose and range errors in the head and neck phantoms

15-year old salivary sarcoma phantom

Delivered dose

Dose difference Delivered – SECT

Received: 7 February 2021

Revised: 11 June 2021

Accepted: 13 June 2021

DOI: 10.1002/mp.15062

RESEARCH ARTICLE

Assessment of the impact of CT calibration procedures for proton therapy planning on pediatric treatments

Esther Bär¹ | Charles-Antoine Collins-Fekete¹ | Vasilis Rompokos² | Ying Zhang¹ | Mark N. Gaze³ | Alison Warry² | Andrew Poynter² | Gary Royle¹

MEDICAL PHYSICS

Next steps

- All investigations so far were theoretical
- Children's tissue compositions and densities need to be verified
 - Work in progress to do elemental analysis on few tissues
- DECT will be implemented at UCLH initiating a patient study comparing DECT vs SECT
- Future outlook: Reduction of treatment-related side effects?

Take-home message

- Children's tissues are different from adult tissues in composition and density
- A single-energy CT calibration curve is not sufficient to represent paediatric tissues
- cases.

RSP errors lead to dose errors larger than 5 Gy, range errors larger than 5 mm

 DECT better represents differences in tissues, in fact DECT reduces the dose errors to <1 Gy and the range error <1 mm in the three here demonstrated

Range differences only represent errors from CT-to-RSP conversion and do not include other sources of range uncertainties (e.g., *I*-value, biology, CT grid size,...).

Acknowledgements

UCL • King's

NHS Foundation Trust