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Motivation – Replacement of old pCT demonstrator

Project status
Û Current pCT demonstrator was build from

existing hardware (Ulrich-Pur et al. 2021)
I Double-sided Si-strip detectors
I TERA range telescope
I Huge development efforts had to be made to

get demonstrator operational Experimental setup

Û Performance was measured at MedAustron
I RSP accuracy ≈ 0.59 %
I RSP resolution ≈ 9.3 %
I Mean DAQ rate ≈ 0.9 kHz

Û Not designed for clinical use
I Establish pCT workflow

Forward projection 3D RSP map
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Overview – iCT system based on 4D-tracking detectors

Next step: upgrade solution based on 4D tracking detectors
Û Simulataneous measurement of particle position and time
Û Residual energy is estimated via time-of-flight measurement

I No need to stop particles in calorimeter
Û TOF through object can be used for particle identification (filtering) (Rovituso et al. 2017)
Û Strong interest from HEP to develop fast 4D tracking detectors with high granularity (Sadrozinski

et al. 2017)

Ion computed tomography setup based on 4D tracking detectors
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Overview – Low Gain Avalanche Detector

Full iCT system solely based on Low Gain Avalanche Detectors (LGADs)
Û Intrinsic gain layer with controlled gain (≈ 10-30) improves SNR and time resolution

I High time resolution (30− 50 ps) (Pietraszko et al. 2020, Pitters et al. 2020)
Û Short rise times (O(1 ns))
Û Small pitch (spatial resolution < 100µm) vs fill factor
Û Low material budget (X/X0 << 1 % for strips)

Low Gain Avalanche Detector

σt
2 ≈

(
trise
SNR

)
︸ ︷︷ ︸
≈σ2

jitter

2
+ σt,floor

2︸ ︷︷ ︸
gain indep.

Intrinsic time resolution (Sadrozinski et al. 2017)
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TOF calorimeter – Overview

Residual energy calculation via time-of-flight measurements
Û Influence of system parameters on energy resolution and accuracy was studied
Û Simulation of different detector technologies (pixel, strip)

I X
X0

= 0.1-2.3 % (Si+dielectric(FR4)+Cu compound)

Û Assumptions for the energy measurement
I Straight line track
I No energy loss inside calorimeter

Ekin = m0c
2 ·
(

1√
1− L2

c2TOF2

− 1
)

Û Development of calibration procedure required
LGAD based TOF calorimeter
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TOF calorimeter – Energy resolution (precision)
Theoretical energy resolution of a TOF calorimeter

Û Intrinsic TOF resolution should be ≤ 30 ps per plane to achieve Eres < 1 % (goal for WEPL
detector) (Bashkirov et al. 2016)
I In general : σWET ∝

σEresid
SW (Eresid) (Collins-Fekete et al. 2020)
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TOF calorimeter – Calibration (accuracy)

Systematic error I
Û Particles loose energy along path which increases TOF

I Energy is underestimated
TOF =

∫ L
0

ds
v(~x(s)) 6=

L
vresidual
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TOF calorimeter – Calibration (accuracy)

Systematic error II
Û Symmetric total TOF distribution (with σTOF) leads to an asymmetric residual energy distribution

(E-TOF relationship)
I Shift towards lower energies
I Increases for higher energies and higher σTOF
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TOF calorimeter – Calibration (accuracy)

Û Absolute error is dominated by material budget (energy loss)
I Flight distance not as significant as material budget (energy loss in air is almost negligible)

Û Intrinsic time resolution σtime,plane is more dominant when energy loss is small
I High residual energies
I Low material budget

Û Dedicated calibration procedure was performed for each setting (dashed lines)
I Maximum relative error could be reduced to ≈ Oh
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iCT setup – Overview

Performed simulations

Ion computed tomography setup based on 4D
tracking detectors.

Û CTP404 was used for performance studies
Û Primary particle flux: 100 p/mm2

Û 360 projection angles in 1 deg steps
Û DDB for reconstruction (Rit et al. 2012)

Parameter Range Stepsize
X/X0 0.1− 2.3 % ≈ 1 %
σxy 0 µm fixed
σT 0− 100 ps 10− 50 ps
C 10 cm fixed
D1,2,3 10 cm fixed
DTOF 50− 200 cm 50 cm
E0 200− 400 MeV 50 MeV
Particle type proton fixed

Summary of the iCT system parameters which were
varied to study the overall performance.
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iCT setup – Analysis
Catphan Analysis
Û RSP values were collected in 6× 6mm2 ROIs

at each insert (15 slices each)
Û Mean absolute percentage error (MAPE) and

coefficient of variation (CV) were used for RSP
accuracy and precision estimation

CTP404 phantom (frontal view)
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Selected results – Precision

RSP precision
Û Energy resolution and RSP resolution are mainly dominated by intrinsic time resolution per plane

and beam energy
Û Central slice for 200 and 400 MeV protons and 0.1 %X/X0

75 0 75
x [mm]

75

0

75

z [
m

m
]

0.0

0.5

1.0

1.5

2.0

RS
P

σtime,plane = 30 ps
E0 = 200 MeV

75 0 75
x [mm]

75

0

75
z [

m
m

]

0.0

0.5

1.0

1.5

2.0

RS
P

σtime,plane = 100 ps
E0 = 200 MeV

75 0 75
x [mm]

75

0

75

z [
m

m
]

0.0

0.5

1.0

1.5

2.0

RS
P

σtime,plane = 30 ps
E0 = 400 MeV

75 0 75
x [mm]

75

0

75

z [
m

m
]

0.0

0.5

1.0

1.5

2.0

RS
P

σtime,plane = 100 ps
E0 = 400 MeV

F.Ulrich-Pur (HEPHY) 16/23



Motivation TOF calorimeter iCT setup Selected results Summary and Outlook

Selected results – Precision

RSP precision

Insert ideal pCT TOF-pCT30 ps
0.1 % X

X0
TOF-pCT30 ps

1.0 % X
X0

TOF-pCT30 ps
2.3 % X

X0

PMP 2.77 3.479 3.649 3.675
LDPE 2.295 3.118 3.062 3.541
Polystyrene 2.239 2.834 3.01 3.121
Acrylic 1.968 2.636 2.819 3.089
Delrin 1.835 2.308 2.378 2.475
Teflon 1.276 1.64 1.655 2.287

RSP coefficient of variation [%] of the iCT system for 200 MeV protons and a
calorimeter length of 1m.

CV measured in teflon
insert

Û RSP precision could be further improved
I F.ex.: by adapting calorimeter length or by increasing nr of LGADs per timing layer
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Selected results – Precision

RSP precision

Insert ideal pCT TOF-pCT10 ps
0.1 % X

X0
TOF-pCT10 ps

1.0 % X
X0

TOF-pCT10 ps
2.3 % X

X0

PMP 2.77 2.705 3.068 3.062
LDPE 2.295 2.501 2.577 2.969
Polystyrene 2.239 2.422 2.494 2.669
Acrylic 1.968 2.136 2.321 2.534
Delrin 1.835 1.858 2.007 2.163
Teflon 1.276 1.367 1.403 1.656

RSP coefficient of variation [%] of the iCT system for 200 MeV protons and a
calorimeter length of 1m.

CV measured in teflon
insert

Û RSP precision could be further improved
I F.ex.: by adapting calorimeter length or by increasing nr of LGADs per timing layer
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Selected results – Accuracy

RSP accuracy
Û Dedicated calibration procedure for TOF calorimeter was implemented
Û After calibration RSP accuracy could be lowered down to ≈ 0.12-0.6 %

I Well below clinical requirements
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Selected results – Accuracy

RSP accuracy

Insert RSPref ideal pCT TOF-pCT30 ps
0.1 % X

X0
TOF-pCT30 ps

1.0 % X
X0

TOF-pCT30 ps
2.3 % X

X0

PMP 0.89 0.232± 0.119 0.410± 0.150 0.306± 0.158 −0.033± 0.160
LDPE 0.987 −0.004± 0.099 0.098± 0.162 0.177± 0.132 0.262± 0.153
Polystyrene 1.043 −0.030± 0.096 0.012± 0.122 0.007± 0.120 0.211± 0.135
Acrylic 1.165 0.035± 0.085 0.057± 0.113 0.162± 0.121 0.154± 0.133
Delrin 1.371 −0.330± 0.079 0.103± 0.099 0.074± 0.102 −0.008± 0.107
Teflon 1.85 −0.153± 0.055 0.011± 0.071 −0.007± 0.712 −0.202± 0.098
MAPE [%] - 0.081 0.115 0.122 0.145

Relative RSP errors [%] of the iCT system for 200 MeV protons and a calorimeter length of 1m. The
standard error of the mean was used to estimate the uncertainty of the RSP accuracy in each insert.
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Summary and Outlook

Û Design studies for an iCT sytstem based on 4D-tracking detectors were started
I Multiple system parameters were varied and optimized (based on MC simulations)
I CTP404 was used to measure RSP precision and accuracy

Û An LGAD-based iCT system could potentially fulfill clinical requirements
I For almost all settings, the RSP MAPE was between 0.12-0.6 %
I RSP precision and energy resolution can still be improved

Û Next steps:
I Should be verified experimentally
I Development of an iCT demonstrator based on LGADs is planned
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Backup– Intrinsic time resolution of an LGAD

Intrinsic time resolution (Sadrozinski et al. 2017)

σt
2 = σTimeWalk

2 + σLandauNoise
2 + σDistortion

2 + σJitter
2 + σTDC

2

Û σTimeWalk
I A constant signal threshold for varying signal amplitudes, but constant rise times, induces an

uncertainty in the time-of-arrival and time-over-threshold
Û σLandauNoise

I Statistical fluctuations of energy deposition in active volume of the sensor
Û σDistortion

I Non-uniform weighting field and non-saturated drift velocity (i(t) = −q~v · ~EW)
Û σJitter

I Time uncertainty due to early or late firing of the comparator due to noisy signal (depends on gain)
Û σTDC

I Time uncertainty due to limited time resolution of TDC (binning)
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Backup – Tracker
Tracking telescope with 2+2 DSSDs

Û DSSD
I Thickness: 300 µm
I Size: (2.56× 5.12) cm2

F X-side: 512 p-doped strips with 50 µm pitch
F Y-side: 512 n-doped strips with 100 µm pitch

Û GbE-based readout
I APV25 chip (French et al. 2001)
I Belle-II SVD readout chain with adapted FW and SW (Thalmeier

et al. 2017)
I Achieved event-rate ≤ 30 kHz

Û Corryvreckan framework for tracking (Dannheim et al. 2021)
I Detector alignment
I Track fitting
I Phantom positioning based on MCS radiography (Schütze et al. 2018)

F.Ulrich-Pur (HEPHY) 3/15
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Backup – Tracker readout system
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Backup – Calorimeter

Implementation of a range telescope (formerly TERA (Bucciantonio et al. 2013))

Û 42 plastic scintillators layers
I Size: (3× 300× 300) mm3 (≈ 3.6 mm WET)
I Can measure protons up to ≈ 150 MeV

Û SiPMs for signal generation
I 400 pixel
I Subsequent ADC resolution (12 bit)
I Limited energy range

F Range telescope instead of sampling calorimeter
Û Readout via USB connection

I Event rate < 16 kHz
Û SiPM power supply was unstable

I Mainboard was completely redesigned
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Backup – SiPM calibration

Û SiPM operates in Geiger mode
I Light from scintillators is measured with SiPMs
I Signal is proportional to number of detected photons

(fired pixels) → Edep in scintillator

Û Limited energy range and resolution
I Only 400 pixel
I Subsequent ADC resolution (12 bit)

Û Energy deposition in scintillator ∝ Landau distribution
I MPV is shifted by adapting bias voltage (gain) to

optimise energy range and energy resolution
F Gain very sensitive to voltage instabilities and

temperature
I MPV of ADC counts is then converted to deposited

energy by comparison to Geant4 simulation (calibration)
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Backup – Calorimeter calibration

Û Optimization of SiPM dynamic range
I SiPM calibration was performed with 800 MeV protons at

MedAustron

Û Calibration of range telescope
I Estimation of mean water equivalent thickness (WET) of

the calorimeter components
F Ranges are measured for different proton energies
F Comparison to NIST data for WET estimation of trigger

scintillators and TERA scintillators

Û Range algorithm for single protons
I Energy cuts in plateau (pile-ups)
I Last slice over threshold and first slice under threshold

defines range
F To compensate fluctuations of single slices
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Backup – Testbeam at MedAustron

Trigger
scintillators

Calorimeter

Phantom

Tracker

Beam
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Accelerator layout
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Accelerator layout – Synchrotron

Image: MedAustron

Û circumference 78 m
Û radius 12 m

Û 16 dipole magnets
Û 24 quadrupole magnets

Û 1 RF cavity for acceleration
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Backup– MedAustron
Synchrotron accelerator complex

Û Circumference: 77.4 m
Û Energies:

I Protons: 60 MeV to 800 MeV,
Clinical energies ≤ 250 MeV

I Carbon ions: 120 MeV/u to 400 MeV/u

Û 4 slots for ion sources:
I Protons
I Carbon ions
I Redundant source
I Unused, could be used for He
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Backup– MedAustron
Synchrotron accelerator complex

Û Four irradiation rooms:
I IR1: Exclusive to research

(protons up to 800 MeV, low rates)
I IR2, IR3, IR4: Clinical use

(Limited to clinical energies)
I Beam only in one room at a time

Û Beam parameters:
I Beam delivery: pencil beam scanning
I 5 s spill
I Spotsize: 7 mm to 21 mm FWHM
I Clinical rates:

F Protons: 109 particles/s
F Carbon ions: 107 particles/s

I Research: ≥103 particles/s
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Backup – TIGRE toolbox

Û TIGRE: Tomographic Iterative GPU-based
Reconstruction Toolbox

Û Developed for cone beam CT (CBCT)
I Used by collaborating group at MedUni

Vienna for CBCT
Û Single or multi-GPU computation
Û Modular structure
Û Forward and backprojection (A(x)) are

optimized for GPU computing
Û Algortihms are written in high-level language

(Python, Matlab)

Image: TIGRE (Biguri et al. 2016)

Û Available algorithms:
I Filtered back projection, FDK
I Iterative algorithms (SART,

OS-SART,..)
I Custom algorithms

7https://arxiv.org/abs/1905.03748
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