Development of an ion CT system based on 4D-tracking and time-of-flight based residual energy determination

LLU workshop 2021, $3^{\rm rd}$ of August, 2021 Felix Ulrich-Pur on behalf of the protonCT group at HEPHY/TU Wien

Outline

2 TOF calorimeter

iCT setup

Motivation – Replacement of old pCT demonstrator

Project status

- Current pCT demonstrator was build from existing hardware (Ulrich-Pur et al. 2021)
 - Double-sided Si-strip detectors
 - TERA range telescope
 - Huge development efforts had to be made to get demonstrator operational
- \rightarrow Performance was measured at MedAustron
 - RSP accuracy $\approx 0.59 \%$
 - RSP resolution \approx 9.3 %
 - Mean DAQ rate pprox 0.9 kHz
- \rightarrow Not designed for clinical use
 - Establish pCT workflow

3D RSP map

Overview – iCT system based on 4D-tracking detectors

Next step: upgrade solution based on 4D tracking detectors

- \rightarrow Simulataneous measurement of particle position and time
- → Residual energy is estimated via time-of-flight measurement
 - No need to stop particles in calorimeter
- → TOF through object can be used for particle identification (filtering) (Rovituso et al. 2017)
- Strong interest from HEP to develop fast 4D tracking detectors with high granularity (Sadrozinski et al. 2017)

Ion computed tomography setup based on 4D tracking detectors

Overview – Low Gain Avalanche Detector

Full iCT system solely based on Low Gain Avalanche Detectors (LGADs)

- Intrinsic gain layer with controlled gain (\approx 10-30) improves SNR and time resolution
 - ▶ High time resolution (30 50 ps) (Pietraszko et al. 2020, Pitters et al. 2020)
- → Short rise times (O(1 ns))
- Small pitch (spatial resolution < 100 $\mu \rm{m})$ vs fill factor
- → Low material budget $(X/X_0 << 1\%$ for strips)

Low Gain Avalanche Detector

Intrinsic time resolution (Sadrozinski et al. 2017)

Outline

2 TOF calorimeter

iCT setup

④ Selected results

5 Summary and Outlook

TOF calorimeter – Overview

Residual energy calculation via time-of-flight measurements

- ightarrow Influence of system parameters on energy resolution and accuracy was studied
- → Simulation of different detector technologies (pixel, strip)
 - $\frac{X}{X_0} = 0.1-2.3\%$ (Si+dielectric(FR4)+Cu compound)
- → Assumptions for the energy measurement
 - Straight line track
 - No energy loss inside calorimeter

$$E_{\rm kin} = m_0 c^2 \cdot \left(\frac{1}{\sqrt{1 - \frac{L^2}{c^2 \,{
m TOF}^2}}} - 1\right)$$

→ Development of calibration procedure required

LGAD based TOF calorimeter

Motivation TOF calorimeter iCT setup Selected results Summary and Outlool

TOF calorimeter – Energy resolution (precision)

Theoretical energy resolution of a TOF calorimeter

➤ Intrinsic TOF resolution should be ≤ 30 ps per plane to achieve Eres < 1% (goal for WEPL detector) (Bashkirov et al. 2016)</p>

▶ In general : $\sigma_{\text{WET}} \propto \frac{\sigma_{\text{E}_{\text{resid}}}}{S_W(\text{E}_{\text{resid}})}$ (Collins-Fekete et al. 2020)

TOF calorimeter – Calibration (accuracy)

Systematic error I

- → Particles loose energy along path which increases TOF
 - Energy is underestimated

Impact of energy loss along flightpath: 100 MeV **protons,** 0.5 m **flightpath**

TOF =
$$\int_0^L \frac{\mathrm{d}s}{v(\vec{x}(s))} \neq \frac{L}{v_{\text{residual}}}$$

Impact of energy loss along flightpath: 100 MeV **protons,** 2 m **flightpath**

TOF calorimeter – Calibration (accuracy)

Systematic error II

- → Symmetric total TOF distribution (with σ_{TOF}) leads to an asymmetric residual energy distribution (E-TOF relationship)
 - Shift towards lower energies
 - Increases for higher energies and higher σ_{TOF}

Time-of-flight for different beam energies

Asymmetric shift of energy distribution due to non-linear E-TOF relation

TOF calorimeter – Calibration (accuracy)

- → Absolute error is dominated by material budget (energy loss)
 - Flight distance not as significant as material budget (energy loss in air is almost negligible)
- Intrinsic time resolution $\sigma_{\rm time, plane}$ is more dominant when energy loss is small
 - High residual energies
 - Low material budget
- → Dedicated calibration procedure was performed for each setting (dashed lines)
 - \blacktriangleright Maximum relative error could be reduced to $\approx \mathcal{O}\%_{0}$

Outline

Motivation

2 TOF calorimeter

iCT setup

5 Summary and Outlook

iCT setup – Overview

Performed simulations

lon computed tomography setup based on 4D tracking detectors.

- → CTP404 was used for performance studies
- ➤ Primary particle flux: 100 p/mm²
- ➤ 360 projection angles in 1 deg steps
- → DDB for reconstruction (Rit et al. 2012)

Parameter	Range	Stepsize
X/X_0	0.1-2.3%	pprox 1~%
$\sigma_{\mathbf{x}\mathbf{y}}$	0 µm	fixed
$\sigma_{\mathbf{T}}$	$0-100{ m ps}$	$10-50\mathrm{ps}$
С	10 cm	fixed
$\mathbf{D_{1,2,3}}$	10 cm	fixed
$\mathbf{D}_{\mathbf{TOF}}$	$50-200\mathrm{cm}$	50 cm
$\mathbf{E_0}$	200-400MeV	50 MeV
Particle type	proton	fixed

Summary of the iCT system parameters which were varied to study the overall performance.

iCT setup – Analysis

Catphan Analysis

- → RSP values were collected in 6 × 6mm² ROIs at each insert (15 slices each)
- Mean absolute percentage error (MAPE) and coefficient of variation (CV) were used for RSP accuracy and precision estimation

CTP404 phantom (frontal view)

Example RSP distributions for $E_0=$ 200 MeV , $X/X_0=$ 0.1 %,L= 1 m

$$CV = \frac{\sigma_{RSP}}{\mu_{RSP}}, \quad err_{rel} = \frac{|RSP_{theo} - RSP_{meas}|}{RSP_{theo}}, \quad MAPE = \frac{\sum_{i}^{n_{mat}} err_{rel,i}}{n_{mat}}$$

Outline

Motivation

2 TOF calorimeter

iCT setup

5 Summary and Outlook

Selected results – Precision

RSP precision

- Energy resolution and RSP resolution are mainly dominated by intrinsic time resolution per plane and beam energy
- Central slice for 200 and 400 MeV protons and 0.1 $\% X/X_0$

Selected results – Precision

RSP precision

Insert	ideal pCT	TOF-pCT ³⁰	$\% \frac{X}{X_0}$ TOF-pCT $^{30 \text{ ps}}_{1.0 \% \frac{X}{X_0}}$ T	$OF\text{-}pCT^{30ps}_{2.3\%\frac{X}{X_0}}$	RSP coefficient of variation for tellon
PMP	2.77	3.479	3.649	3.675	35
LDPE	2.295	3.118	3.062	3.541	30 300 MeV 350 MeV 400 MeV
Polystyrene	2.239	2.834	3.01	3.121	25 Z20
Acrylic	1.968	2.636	2.819	3.089	5 15
Delrin	1.835	2.308	2.378	2.475	
Teflon	1.276	1.64	1.655	2.287	

RSP coefficient of variation [%] of the iCT system for 200 MeV protons and a calorimeter length of 1m.

CV measured in teflon insert

→ RSP precision could be further improved

F.ex.: by adapting calorimeter length or by increasing nr of LGADs per timing layer

Selected results – Precision

RSP precision

Insert	ideal pCT	$\textbf{TOF-pCT}_{0.1\%}^{10\text{ps}}$	$\frac{X}{X_0}$ TOF-pCT $\frac{10 \text{ ps}}{1.0 \% \frac{X}{X_0}}$	$TOF ext{-}pCT^{10ps}_{2.3\%rac{X}{X_0}}$	RSP coefficient of variation for teffon for: In divisionate and 0.1% XX01.GAD modules
PMP	2.77	2.705	3.068	3.062	35 200 MeV 250 MeV
LDPE	2.295	2.501	2.577	2.969	30 300 MeV 350 MeV 400 MeV
Polystyrene	2.239	2.422	2.494	2.669	25
Acrylic	1.968	2.136	2.321	2.534	ð 15
Delrin	1.835	1.858	2.007	2.163	10
Teflon	1.276	1.367	1.403	1.656	

RSP coefficient of variation [%] of the iCT system for 200 MeV protons and a calorimeter length of 1m.

CV measured in teflon insert

→ RSP precision could be further improved

F.ex.: by adapting calorimeter length or by increasing nr of LGADs per timing layer

Selected results – Accuracy

RSP accuracy

- → Dedicated calibration procedure for TOF calorimeter was implemented
- After calibration RSP accuracy could be lowered down to \approx 0.12-0.6 %
 - Well below clinical requirements

Selected results – Accuracy

RSP accuracy

Insert	$\mathbf{RSP}_{\mathrm{ref}}$	ideal pCT	$\textbf{TOF-pCT}_{0.1\%\frac{X}{X_0}}^{30\text{ps}}$	$\textbf{TOF-pCT}_{1.0\%\frac{X}{X_0}}^{30\text{ps}}$	$\textbf{TOF-pCT}^{30\text{ps}}_{2.3\%\frac{X}{X_0}}$
PMP	0.89	0.232 ± 0.119	0.410 ± 0.150	0.306 ± 0.158	-0.033 ± 0.160
LDPE	0.987	-0.004 ± 0.099	0.098 ± 0.162	0.177 ± 0.132	0.262 ± 0.153
Polystyrene	1.043	-0.030 ± 0.096	0.012 ± 0.122	0.007 ± 0.120	0.211 ± 0.135
Acrylic	1.165	0.035 ± 0.085	0.057 ± 0.113	0.162 ± 0.121	0.154 ± 0.133
Delrin	1.371	-0.330 ± 0.079	0.103 ± 0.099	0.074 ± 0.102	-0.008 ± 0.107
Teflon	1.85	-0.153 ± 0.055	0.011 ± 0.071	-0.007 ± 0.712	-0.202 ± 0.098
MAPE [%]	-	0.081	0.115	0.122	0.145

Relative RSP errors [%] of the iCT system for 200 MeV protons and a calorimeter length of 1m. The standard error of the mean was used to estimate the uncertainty of the RSP accuracy in each insert.

Outline

Motivation

2 TOF calorimeter

iCT setup

Summary and Outlook

- → Design studies for an iCT sytstem based on 4D-tracking detectors were started
 - Multiple system parameters were varied and optimized (based on MC simulations)
 - CTP404 was used to measure RSP precision and accuracy
- → An LGAD-based iCT system could potentially fulfill clinical requirements
 - \blacktriangleright For almost all settings, the RSP MAPE was between 0.12-0.6 %
 - RSP precision and energy resolution can still be improved
- ➤ Next steps:
 - Should be verified experimentally
 - Development of an iCT demonstrator based on LGADs is planned

Acknowledgements

Contributors

- → Thomas Bergauer
- → Alexander Burker
- → Albert Hirtl

- → Christian Irmler
- → Stefanie Kaser
- → Florian Pitters

Reconstruction software

→ Simon Rit

Outline

6 Backup

Backup– Intrinsic time resolution of an LGAD

Intrinsic time resolution (Sadrozinski et al. 2017)

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$

- $ightarrow \sigma_{\mathrm{TimeWalk}}$
 - A constant signal threshold for varying signal amplitudes, but constant rise times, induces an uncertainty in the time-of-arrival and time-over-threshold
- $\succ \sigma_{
 m LandauNoise}$
 - Statistical fluctuations of energy deposition in active volume of the sensor
- $\rightarrow \sigma_{\mathrm{Distortion}}$
 - ▶ Non-uniform weighting field and non-saturated drift velocity $(i(t) = -q\vec{v} \cdot \vec{E_W})$
- $\rightarrow \sigma_{\rm Jitter}$
 - Time uncertainty due to early or late firing of the comparator due to noisy signal (depends on gain)
- $\rightarrow \sigma_{\text{TDC}}$
 - Time uncertainty due to limited time resolution of TDC (binning)

Backup – Tracker

Tracking telescope with 2+2 DSSDs

➤ DSSD

- Thickness: 300 μm
- Size: $(2.56 \times 5.12) \text{ cm}^2$
 - $\star\,$ X-side: 512 p-doped strips with 50 μm pitch
 - $\star\,$ Y-side: 512 n-doped strips with 100 μm pitch
- ➤ GbE-based readout
 - ► APV25 chip (French et al. 2001)
 - Belle-II SVD readout chain with adapted FW and SW (Thalmeier et al. 2017)
 - Achieved event-rate \leq 30 kHz
- → Corryvreckan framework for tracking (Dannheim et al. 2021)
 - Detector alignment
 - Track fitting
 - Phantom positioning based on MCS radiography (Schütze et al. 2018)

Backup – Tracker readout system

Backup – Calorimeter

Implementation of a range telescope (formerly TERA (Bucciantonio et al. 2013))

- ➤ 42 plastic scintillators layers
 - ► Size: (3 × 300 × 300) mm³ (≈ 3.6 mm WET)
 - \blacktriangleright Can measure protons up to pprox 150 MeV
- ➤ SiPMs for signal generation
 - 400 pixel
 - Subsequent ADC resolution (12 bit)
 - Limited energy range
 - * Range telescope instead of sampling calorimeter
- ➤ Readout via USB connection
 - Event rate < 16 kHz</p>
- ➤ SiPM power supply was unstable
 - Mainboard was completely redesigned

Backup – SiPM calibration

- ➤ SiPM operates in Geiger mode
 - Light from scintillators is measured with SiPMs
 - Signal is proportional to number of detected photons (fired pixels) → E_{dep} in scintillator
- ➤ Limited energy range and resolution
 - Only 400 pixel
 - Subsequent ADC resolution (12 bit)
- Energy deposition in scintillator \propto Landau distribution
 - MPV is shifted by adapting bias voltage (gain) to optimise energy range and energy resolution
 - * Gain very sensitive to voltage instabilities and temperature
 - MPV of ADC counts is then converted to deposited energy by comparison to Geant4 simulation (calibration)

Backup – Calorimeter calibration

- ➤ Optimization of SiPM dynamic range
 - SiPM calibration was performed with 800 MeV protons at MedAustron
- ➤ Calibration of range telescope
 - Estimation of mean water equivalent thickness (WET) of the calorimeter components
 - * Ranges are measured for different proton energies
 - Comparison to NIST data for WET estimation of trigger scintillators and TERA scintillators
- → Range algorithm for single protons
 - Energy cuts in plateau (pile-ups)
 - Last slice over threshold and first slice under threshold defines range
 - ★ To compensate fluctuations of single slices

Backup – Testbeam at MedAustron

TECHNISCHE UNIVERSITÄT WIEN

Accelerator layout

Image: MedAustron

Accelerator layout – Synchrotron

Image: MedAustron

- ➤ circumference 78 m → 16 dipole magnets
- ➤ radius 12 m

- ➤ 24 quadrupole magnets
- → 1 RF cavity for acceleration

Backup- MedAustron

Synchrotron accelerator complex

- → Circumference: 77.4 m
- → Energies:
 - Protons: 60 MeV to 800 MeV, Clinical energies ≤ 250 MeV
 - Carbon ions: 120 MeV/u to 400 MeV/u

➤ 4 slots for ion sources:

- Protons
- Carbon ions
- Redundant source
- Unused, could be used for He

Backup– MedAustron

Synchrotron accelerator complex

- → Four irradiation rooms:
 - IR1: Exclusive to research (protons up to 800 MeV, low rates)
 - IR2, IR3, IR4: Clinical use (Limited to clinical energies)
 - Beam only in one room at a time

➤ Beam parameters:

- Beam delivery: pencil beam scanning
- 5 s spill
- Spotsize: 7 mm to 21 mm FWHM
- Clinical rates:
 - ★ Protons: 10⁹ particles/s
 - ★ Carbon ions: 10⁷ particles/s
- Research: $\geq 10^3$ particles/s

Backup – TIGRE toolbox

- TIGRE: Tomographic Iterative GPU-based Reconstruction Toolbox
- → Developed for cone beam CT (CBCT)
 - Used by collaborating group at MedUni Vienna for CBCT
- ➤ Single or multi-GPU computation
- ➤ Modular structure
- ➤ Forward and backprojection (A(x)) are optimized for GPU computing
- Algortihms are written in high-level language (Python, Matlab)

Image: TIGRE (Biguri et al. 2016)

- ➤ Available algorithms:
 - Filtered back projection, FDK
 - Iterative algorithms (SART, OS-SART,..)
 - Custom algorithms

⁷ https://arxiv.org/abs/1905.03748

Bashkirov, V. A. et al. (Jan. 2016). "Novel scintillation detector design and performance for proton radiography and computed tomography". In: Medical Physics 43.2, pp. 664–674, DOI: 10.1118/1.4939255. Biguri, Ander et al. (2016). "TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction". In: Biomedical Physics & Engineering Express 2.5, p. 055010. DOI: 10.1088/2057-1976/2/5/055010. Bucciantonio, M. et al. (2013). "Development of a fast proton range radiography system for quality assurance in hadrontherapy". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 732. Vienna Conference on Instrumentation 2013, pp. 564 –567. ISSN: 0168-9002. DOI: 10.1016/j.nima.2013.05.110. Collins-Fekete, Charles-Antoine et al. (Apr. 2020). "Statistical limitations in proton imaging". In: Physics in Medicine & Biology 65.8, p. 085011, DOI: 10.1088/1361-6560/ab7972. Dannheim, D. et al. (2021). "Corryvreckan: a modular 4D track reconstruction and analysis software for test beam data". In: Journal of Instrumentation 16.03, P03008. DOI: 10.1088/1748-0221/16/03/p03008. French, M.J. et al. (2001). "Design and results from the APV25, a deep sub-micron CMOS front-end chip for the CMS tracker". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 466.2. 4th Int. Symp. on Development and Application of Semiconductor Tracking Detectors, pp. 359 -365. ISSN: 0168-9002. DOI: 10.1016/S0168-9002(01)00589-7. Pietraszko, J. et al. (July 2020). "Low Gain Avalanche Detectors for the HADES reaction time (T\$\$ 0\$\$) detector upgrade". In: The European Physical Journal A 56.7. DOI: 10.1140/epja/s10050-020-00186-w. URL: https://doi.org/10.1140/epja/s10050-020-00186-w.

Pitters, Florian et al. (2020). "Ion Beam Imaging Activities at TU Wien and HEPHY". talk at Loma Linda Workshop 2020. URL: http://ionimaging.org/talks/ws20201lu-florian-pitters/.

- Rit, S. et al. (2012). "Distance-driven binning for proton CT filtered backprojection along most likely paths". In: URL: https://www.creatis.insa-lyon.fr/~srit/biblio/rit2012b.pdf.
- Rovituso, M et al. (2017). "Fragmentation of 120 and 200 MeV u-14He ions in water and PMMA targets". In: *Physics in Medicine and Biology* 62.4, pp. 1310–1326. DOI: 10.1088/1361-6560/aa5302.
- Sadrozinski, Hartmut F-W et al. (2017). "4D tracking with ultra-fast silicon detectors". In: *Reports on Progress in Physics* 81.2, p. 026101. DOI: 10.1088/1361-6633/aa94d3.
- Schütze, Paul et al. (2018). "Feasibility Study of a Track-Based Multiple Scattering Tomography". In: *Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017*. Ed. by Zhen-An Liu. Singapore: Springer Singapore, pp. 164–170. ISBN: 978-981-13-1316-5. DOI: 10.1063/1.5005503.
- Thalmeier, R. et al. (2017). "The Belle II SVD data readout system". In: *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 845. Proceedings of the Vienna Conference on Instrumentation 2016, pp. 633–638. ISSN: 0168-9002. DOI:
- https://doi.org/10.1016/j.nima.2016.05.104.
- Ulrich-Pur, Felix et al. (2021). A Proton Computed Tomography Demonstrator for Stopping Power Measurements. arXiv: 2106.12890 [physics.med-ph].