

Update on fluence modulated proton CT activities and a new pCT artifact reduction method

George Dedes LMU Munich, Department of Medical Physics

On behalf of: Guillaume Landry, Jannis Dickmann, Stefanie Götz, Katia Parodi

> 7th Loma Linda University Algorithm Workshop 2-4 August 2021

- Sufficiently high energy to traverse patient
- For every proton measure water equivalent path length (WEPL) or energy loss in object, or residual energy, or residual range
- WEPL is the line integral of relative stopping power (RSP)
- Positions and directions may also be measured
- Two main solutions for WEPL determination:
 - Range telescope
 - Calorimeter
 - (other alternatives are currently explored)

- Built by Loma Linda University and University of Santa Cruz Operated by the US pCT collaboration (LMU is member)
- Hybrid energy detector:

 Images reconstructed with the distance driven filtered backprojection algorithm

Rit et al. Med Phys. 2013 Mar;40(3):031103

• Experimental pCT (RSP) images have been shown to suffer from artifacts

• Larger than 1% of RSP in amplitude

Dedes et al. 2019 Phys. Med. Biol. 64 165002

- Adapted an empirical cupping correction from x-ray CT: Kachelrieß et al. Med Phys, 33 (2006), pp. 1269-1274
- Start with the measured projection (WEPL) values q
- Define a set of (Gaussian) WEPL correction functions P_n(q), each covering a WEPL interval (σ=2mm) and interspaced by s=4mm:

$$P_n(q) = A \cdot \exp \left[- \left(rac{q - (n-1) \cdot s - s_0}{\sqrt{2}\sigma}
ight)^2
ight]$$

• The initial projection values can be corrected by applying a weighted sum of the correction functions, with weights c_n :

$$P(q) = q + \sum_{n=1}^N c_n P_n(q) = q + \overrightarrow{c} \cdot \overrightarrow{P}(q).$$

• Utilizing the linearity of the Radon transform (RSP->WEPL)

$$f(\overrightarrow{r}) = R^{-1}p = R^{-1}q + \sum_{n=1}^N c_n f_n(\overrightarrow{r}) = f_0(\overrightarrow{r}) + \overrightarrow{c} \cdot \overrightarrow{f}(\overrightarrow{r})$$

• With $f_n(\overrightarrow{r}) = R^{-1}P_n(q)$ being the reconstructed RSP image of a WEPL correction function applied on the projection

- We use the images (RSP) of the reconstructed correction functions (WEPL) in order to find weights which bring us closer to the desired/known image (RSP)
- But because of the Radon transform linearity, these weights can be applied to the any measured WEPL distribution (projection) of an unknown object

Method (continued)

• The full workflow: Dickmann et al. Phys Med. 2021 Jun;86:57-65

- A PMMA ellipse (165mm/80mm axes, 80mm thickness, RSP=1.160) – "known" RSP phantom
- A water phantom (150.5mm outer diameter, 6.35mm wall, RSP=1.0)
- The CTP404 module of the Catphan 600 phantom (several inserts with RSP ranging from 0.88 to 1.79)
- The pediatric head phantom (ATOM, Model 715 HN, CIRS Inc) mimicing the head of a 5-year old child using tissue-equivalent materials
- Max WEPL: 191mm (ellipse), 152mm (water phantom), 173mm (CTP404) and 176mm (head phantom)

Results - correction

 Scanned all phantoms at two energies and derived the correction for each energy

• Several structures related to stage interfaces, calibration kinks regions etc.

• Observed a slope of about 1.3%

Reconstructed images with and without correction (a) Ellipse (200MeV) (b) Ellipse (187.5MeV) (c) Water (20

position / mm

10

Results – RSP accuracy

- Overall improvement in the RSP accuracy (consistently around 0.5%)
- The correction can be used as the fast calibration of the day without the need of the more time consuming wedge calibration

dataset	energy / MeV	uncorrected	corrected	improvement
high energy	200	$0.87~\pm~0.02$	$0.44~\pm~0.02$	-49%
low energy	187.5	$0.86~\pm~0.03$	$0.48~\pm~0.03$	-44%
Dedes 2019	200	$0.72~\pm~0.03$	—	—
old calibration	200	$1.94~\pm~0.03$	$0.32~\pm~0.03$	-84%

MAPE / %

Results – head phantom

- Works also in more complicated anatomies (pediatric head phantom)
- Piece-wise homogeneous, no RSP variations expected within each piece

- Successfully adapted an x-ray cupping correction to pCT and experimental demonstration of it
- Significantly reduced amplitude of image artifacts with the phase II scanner

 Achieved about 50% improvement and consistently better than 0.5% RSP accuracy

• Applicable also to clinically relevant anatomies

Physica Medica Volume 86, June 2021, Pages 57-65

Technical note

An empirical artifact correction for proton computed tomography

Jannis Dickmann ª 쯔, Christina Sarosiek ^bळ, Stefanie Götz ^a쯔, Mark Pankuch ^c⊠, George Coutrakon ^b쯔, Robert P. Johnson ^d 쯔, Reinhard W. Schulte ^e∞, Katia Parodi ^a∞, Guillaume Landry^{a, f,}g, ¹∞, George Dedes ^a Զ¹∞

- ^a Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), Am Coulombwall 1, Garching bei München, Germany
- ^b Department of Physics, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, Illinois, United States
- ^c Northwestern Medicine Chicago Proton Center, 4455 Weaver Parkway, Warrenville, Illinois, United States
- ^d Department of Physics, U.C. Santa Cruz, 1156 High Street, Santa Cruz, California, United States
- ^e Division of Biomedical Engineering Sciences, Loma Linda University, 11175 Campus Street, Loma Linda, California, United States
- ^f Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, Germany
- ^g German Cancer Consortium (DKTK), Marchioninistraße 15, Munich, Germany

Part II: Performance Evaluation of An Optimization Method for Fluence-Modulated Proton CT with Dose and Variance Objectives

Aim: to use **modulated pencil beams for** achieving arbitrary **image noise targets** with FMpCT

dose outside ROI

High

Goal of this **study**:

• Include both **dose** and **variance** in **FMpCT optimization**

RSP

Dedes et al. (2017), PMB, 62, 6026

Low

Low

Low

- **Prototype pCT scanner**
- Validated MC simulation platform, used in this study

Dose and variance optimization

• Bixel-based approach

• Bixel-based approach

FMpCT in treatment planning

- three **pediatric cases** treated with IMRT selected
 - **proton treatment plans** generated on the basis of the IMRT dose distributions using **ground truth RSP**
 - **ground truth RSP** from the patient model in the pCT MC **simulation** with **full detector modelling**

treatment dose recalculated on pCT and FMpCT images

AU LUDWIG-MAXIMILIANS-UNIVERSITÄT

- **DVH** for **imaging** dose
- Important dose reduction for all out-of-ROI areas
- Dose can be slightly increased in-ROI where treatment dose is also high

• OAR dose can be pushed down

- Inverse planning approach yields optimal fluence distributions
- FMpCT allows substantial imaging dose savings while preserving dose calculation accuracy
 - 80% outside the ROI
 - 87% in some OARs
- Results expected to be **applicable** to **real world** due to fully realistic simulations
- Previous work showed imaging plans are deliverable

Full details:

Physics in Medicine & Biology

IPEM Institute of Physics and Engineering in Medicine

PAPER

Fluence-modulated proton CT optimized with patient-specific dose and variance objectives for proton dose calculation

J Dickmann¹[©], F Kamp^{2,*}, M Hillbrand³, S Corradini², C Belka^{2,4}, R W Schulte⁵[©], K Parodi¹[®], G Dedes¹ and G Landry^{1,2}[©]

- ¹ Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
- ² Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany
- ³ Institut für Radio–Onkologie, Kantonsspital Graubünden, CH-7000 Chur, Switzerland
- 4 German Cancer Consortium (DKTK), D-81377 Munich, Germany
- ⁵ Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92354, United States of America
- * Currently at Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, D-50937 Cologne, Germany.

George Dedes Jannis Dickmann Stefanie Götz Katia Parodi Guillaume Landry Stefanie Corradini Florian Kamp Claus Belka Reinhard Schulte Vladimir Bashkirov

Robert Johnson

Northern Illinois University George Coutrakon Chistina Sarosiek

Mark Pankuch

Simon Rit Nils Krah

Lockdown era experiment

• Late evening in Chicago

• 12 AM to 5 AM in Munich

