Data-Driven Feasibility Algorithms

Howard Heaton¹, Samy Wu Fung¹, Aviv Gibali², Wotao Yin¹ ¹UCLA, ²ORT Braude College

August 2, 2021

Problem – Reconstruct a signal u_d^{\star} from noisy measurements

$$d = Au_d^* + \varepsilon,\tag{1}$$

where ε is noise.

Structure

- Matrix *A* is big, sparse, (probably) overdetermined
- Available prior data (measurements d and "clean" images u^{*}_d)

Goal – Fuse fast feasibility algorithms with big data in practical and theoretical sound manner.

UCLA

Feasibility approach defines hyperplane for equations in system:

$$\mathcal{C}_{d,i} \triangleq \left\{ u : \left\langle a^i, u \right\rangle = d_i \right\}, \text{ for } i = 1, 2, \dots, m.$$
 (2)

When $\varepsilon = 0$, we can solve convex feasibility problem

Find
$$\tilde{u}_d \in \mathcal{C}_d \triangleq \bigcap_{i=1}^m \mathcal{C}_{d,i}$$
. (CFP)

Simple successive projections yields updates $u^{k+1} = P_{\mathcal{C}_{d,i_k}}(u^k)$.

Note – Several fast projection algorithms exist for solving (CFP). **Note** – No regularization in (CFP), \tilde{u}_d might poorly approximate u_d^* .

Problem 1 – When $\varepsilon \neq 0$, we often have $C_d = \emptyset$.

Partial Solution – Relax projections, early stopping, etc

 Problem 2 – How can we incorporate regularization? And data?
 Partial Solution – Superiorization augments projection algorithms by efficiently steering iterates to feasibility while pushing down regularizer value.¹

But what about using available data?

¹See papers of workshop participants Yair Censor and Aviv Gibali.

$$\min_{u \in \mathcal{C}} g(u) \tag{3}$$

by projected gradient (assuming we can project onto C)

$$u^{k+1} = P_{\mathcal{C}}\left(u^k - \alpha \nabla g(u^k)\right). \tag{4}$$

With Data, No Noise – Use nonexpansive (*i.e.* 1-Lipschitz) R_{Θ} with

$$u^{k+1} = P_{\mathcal{C}}(\underline{R_{\Theta}(u^k)}).$$
(5)

Key Idea – Replace analytic term $(I - \alpha \nabla g)$ with learned term R_{Θ} .

Data-Driven Regularization

Figure 1: We replace feasibility algorithm $u^{k+1} = \mathcal{A}^k(u^k)$ with modified method $u^{k+1} = \mathcal{A}^k(R_{\Theta}(u^k))$. Regularization R_{Θ} takes form of neural network with parameters Θ .

Let $\{A^k\}$ be sequence of update operators of a fast projection algorithm (*e.g.* DROP, CARP).

$$\begin{array}{ll} \mbox{Algorithm} & \mbox{Problem}\\ \mbox{Classic} & u^{k+1} = \mathcal{A}^k(u^k) & \mathcal{C}_d = \bigcap_{i=1}^m \mathcal{C}_{d,i}\\ \mbox{Data-Driven} & u^{k+1} = \mathcal{A}^k(R_\Theta(u^k)) & \mathcal{C}_{d,\Theta} = \bigcap_{i=1}^m \operatorname{Fix}(\mathcal{A}^k \circ R_\Theta) \end{array}$$

Table 1: Comparison of Approaches

(Informal) Theorem: If R_{Θ} and $\{\mathcal{A}^k\}$ are 1-Lipschitz and $\mathcal{C}_{d,\Theta} \neq \emptyset$, then $u^k \to u^{\Theta}_d \in \mathcal{C}_{d,\Theta}$.

UCLA

UCLA

Key Idea – We can tune parameters Θ so that R_{Θ} gives

$$u_d^{\star} \approx u_d^{\Theta} = \lim_{k \to \infty} \mathcal{A}^k(R_{\Theta}(u^k)).$$
(6)

Training – Pick optimal Θ^* that solves²

$$\min_{\Theta} \mathbb{E}_{d \sim \mathcal{D}} \left[\| u_d^{\Theta} - u_d^{\star} \|^2 \right]$$
(7)

In practice, we consider $\{(d, u_d^{\star})\}_{d \in \mathcal{D}}$ and minimize empirical risk

$$\min_{\Theta} \frac{1}{|\mathcal{D}|} \sum_{d \in \mathcal{D}} \|u_d^{\Theta} - u_d^{\star}\|^2.$$
(8)

²Training details outside scope of talk. See Fixed Point Networks paper. Note training can be unsupervised, *i.e.* we do not need measurement samples d and signals u_d^* to come in pairs.

Setup – We give numerical examples for X-ray CT reconstruction using $A \in \mathbb{R}^{16384 \times 5490}$ and $\varepsilon = 1.5\%$ Gaussian noise.

Problem 1 – Dataset of random ellipses

Problem 2 – Downscaled LoDoPab CT dataset (realistic)

Algorithm – Use $\mathcal{A}^k = \mathsf{DROP}$ and $R_{\Theta} = \mathsf{ResNet}$ with Convolutions.

Code – All code is available and can be readily run on Google Colab (thus, from any device, including your phone).

Experiments – Ellipses

 $\begin{array}{l} \text{Ground Truth} \\ \text{SSIM: } 1.000 \\ \text{PSNR: } \infty \end{array}$

FBP SSIM: 0.273 PSNR: 18.224

TVS SSIM: 0.582 PSNR: 25.88

TVM SSIM: 0.786 PSNR: 27.80

Unrolled SSIM: 0.811 PSNR: 26.01

F-FPN SSIM: 0.900 PSNR: 30.94

Figure 2: Ellipse reconstructions.

Experiments – Ellipses

Ground Truth SSIM: 1.000 PSNR: ∞

FBP SSIM: 0.273 PSNR: 18.224

TVS SSIM: 0.582 PSNR: 25.88

TVM SSIM: 0.786 PSNR: 27.80

Unrolled SSIM: 0.811 PSNR: 26.01

F-FPN SSIM: 0.900 PSNR: 30.94

Figure 3: Zoomed-in ellipse reconstructions.

U	
\sim	

Method	Avg. PSNR (dB)	Avg. SSIM	# Parameters
Filtered Backprojection	17.79	0.211	1
TV Superiorization	27.35	0.721	2
TV Minimization	28.55	0.772	4
Unrolled Network	30.39	0.859	96,307
F-FPN (proposed)	31.30	0.877	96,307

Table 2: Average PSNR and SSIM on the 1,000 image ellipse testing dataset.

Experiments – Realistic CT

Ground Truth SSIM: 1.000 PSNR: ∞

FBP SSIM: 0.273 PSNR: 18.224

TVS SSIM: 0.582 PSNR: 25.88

TVM SSIM: 0.761 PSNR: 26.85

Unrolled SSIM: 0.787 PSNR: 27.14

F-FPN SSIM: 0.827 PSNR: 28.82

Figure 4: LoDoPab reconstructions.

Experiments – Realistic CT

Ground Truth SSIM: 1.000 PSNR: ∞

FBP SSIM: 0.273 PSNR: 18.224

TVS SSIM: 0.582 PSNR: 25.88

TVM SSIM: 0.761 PSNR: 26.85

Unrolled SSIM: 0.787 PSNR: 27.14

F-FPN SSIM: 0.827 PSNR: 28.82

Figure 5: Zoomed-in LoDoPab reconstructions.

Method	Avg. PSNR (dB)	Avg. SSIM	# Parameters
Filtered Backprojection	19.27	0.354	1
TV Superiorization	26.65	0.697	2
TV Minimization	28.52	0.765	4
Unrolled Network	29.30	0.800	96,307
F-FPN (proposed)	30.46	0.832	96,307

Table 3: Average PSNR/SSIM on the 2,000 image LoDoPab testing dataset.

This talk explored a few ideas.

- CFP has limited handling of noise and regularization
- CFP can be augmented with regularization operator
- Regularizer parameterization can be tuned using data

Contact: hheaton@g.ucla.edu / howardheaton.tech arXiv Preprint: Feasibility-based Fixed Point Networks