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Introduction

Problem – Reconstruct a signal u?
d from noisy measurements

d = Au?
d + ε, (1)

where ε is noise.

Structure

Matrix A is big, sparse, (probably) overdetermined

Available prior data (measurements d and “clean” images u?
d)

Goal – Fuse fast feasibility algorithms with big data in practical

and theoretical sound manner.
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Background

Feasibility approach defines hyperplane for equations in system:

Cd,i ,
{
u :
〈
ai, u

〉
= di

}
, for i = 1, 2, . . . ,m. (2)

When ε = 0, we can solve convex feasibility problem

Find ũd ∈ Cd ,
m⋂

i=1
Cd,i. (CFP)

Simple successive projections yields updates uk+1 = PCd,ik
(uk).

Note – Several fast projection algorithms exist for solving (CFP).

Note – No regularization in (CFP), ũd might poorly approximate u?
d.
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Regularization

Problem 1 – When ε 6= 0, we often have Cd = ∅.

Partial Solution – Relax projections, early stopping, etc

Problem 2 – How can we incorporate regularization? And data?

Partial Solution – Superiorization augments projection algorithms

by efficiently steering iterates to feasibility while

pushing down regularizer value.1

But what about using available data?

1See papers of workshop participants Yair Censor and Aviv Gibali.
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Regularization – Add Data

No Data, No Noise – With ε = 0 and regularizer (e.g. TV), solve

min
u∈C

g(u) (3)

by projected gradient (assuming we can project onto C)

uk+1 = PC
(
uk − α∇g(uk)

)
. (4)

With Data, No Noise – Use nonexpansive (i.e. 1-Lipschitz) RΘ with

uk+1 = PC(RΘ(uk)). (5)

Key Idea – Replace analytic term (I− α∇g) with learned term RΘ.
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Data-Driven Regularization

RΘ

uk Akd uk+1· · ·σ σ

Affine map σ Nonexpansive nonlinearity

Figure 1: We replace feasibility algorithm uk+1 = Ak(uk) with modified

method uk+1 = Ak(RΘ(uk)). Regularization RΘ takes form of neural

network with parameters Θ.
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Comparison of Approaches

Let {Ak} be sequence of update operators of a fast projection

algorithm (e.g. DROP, CARP).

Algorithm Problem

Classic uk+1 = Ak(uk) Cd =
⋂m

i=1 Cd,i

Data-Driven uk+1 = Ak(RΘ(uk)) Cd,Θ =
⋂m

i=1 Fix(Ak ◦RΘ)

Table 1: Comparison of Approaches

(Informal) Theorem: If RΘ and {Ak} are 1-Lipschitz and Cd,Θ 6= ∅,

then uk → uΘ
d ∈ Cd,Θ.
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Tuning the Parameterization RΘ

Key Idea – We can tune parameters Θ so that RΘ gives

u?
d ≈ uΘ

d = lim
k→∞

Ak(RΘ(uk)). (6)

Training – Pick optimal Θ? that solves2

min
Θ

Ed∼D
[
‖uΘ

d − u?
d‖2
]

(7)

In practice, we consider {(d, u?
d)}d∈D and minimize empirical risk

min
Θ

1
|D|

∑
d∈D
‖uΘ

d − u?
d‖2. (8)

2Training details outside scope of talk. See Fixed Point Networks paper. Note

training can be unsupervised, i.e. we do not need measurement samples d and

signals u?
d to come in pairs.
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Experiments

Setup – We give numerical examples for X-ray CT reconstruction

using A ∈ R16384×5490 and ε = 1.5% Gaussian noise.

Problem 1 – Dataset of random ellipses

Problem 2 – Downscaled LoDoPab CT dataset (realistic)

Algorithm – Use Ak =DROP and RΘ = ResNet with Convolutions.

Code – All code is available and can be readily run on Google

Colab (thus, from any device, including your phone).
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Experiments – Ellipses

Ground Truth FBP TVS
SSIM: 1.000 SSIM: 0.273 SSIM: 0.582

PSNR:∞ PSNR: 18.224 PSNR: 25.88

TVM Unrolled F-FPN
SSIM: 0.786 SSIM: 0.811 SSIM: 0.900
PSNR: 27.80 PSNR: 26.01 PSNR: 30.94

Figure 2: Ellipse reconstructions. 10 / 16
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Experiments – Ellipses

Method Avg. PSNR (dB) Avg. SSIM # Parameters

Filtered Backprojection 17.79 0.211 1

TV Superiorization 27.35 0.721 2

TV Minimization 28.55 0.772 4

Unrolled Network 30.39 0.859 96,307

F-FPN (proposed) 31.30 0.877 96,307

Table 2: Average PSNR and SSIM on the 1,000 image ellipse testing dataset.
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Experiments – Realistic CT

Ground Truth FBP TVS
SSIM: 1.000 SSIM: 0.273 SSIM: 0.582

PSNR:∞ PSNR: 18.224 PSNR: 25.88

TVM Unrolled F-FPN
SSIM: 0.761 SSIM: 0.787 SSIM: 0.827
PSNR: 26.85 PSNR: 27.14 PSNR: 28.82

Figure 4: LoDoPab reconstructions. 13 / 16
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Experiments – Realistic CT

Method Avg. PSNR (dB) Avg. SSIM # Parameters

Filtered Backprojection 19.27 0.354 1

TV Superiorization 26.65 0.697 2

TV Minimization 28.52 0.765 4

Unrolled Network 29.30 0.800 96,307

F-FPN (proposed) 30.46 0.832 96,307

Table 3: Average PSNR/SSIM on the 2,000 image LoDoPab testing dataset.
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Summary

This talk explored a few ideas.

CFP has limited handling of noise and regularization

CFP can be augmented with regularization operator

Regularizer parameterization can be tuned using data

Contact: hheaton@g.ucla.edu / howardheaton.tech
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