Different energy detectors for single-event helium ion imaging

Lennart Volz^{1,2}, T. Vichtl^{1,2}, C.-A. Collins-Fekete³ and J. Seco^{1,2}

Loma Linda workshop 2021

¹ Department of Biomedical Physics in Radiation Oncology, DKFZ, Heidelberg, GER ² Department of Physics and Astronomy, Heidelberg University, Heidelberg, GER ³ Department of medical physics and biomedical engineering, University College London, London, UK

Research for a Life without Cancer

Setup

Why helium ion imaging?

- Factor 2 less scattering than protons
- Factor 2 less straggling than protons
- Lower loss of primaries than heavier ions

Possibly best balance for imaging¹

Helium CT with US pCT collaboration prototype

dkfz.

Helium CT with US pCT collaboration prototype

Optimized for proton imaging (Bashkirov et al. (2016) Med. Phys.)

Can we improve the setup for helium ion imaging?

Wish list

1. Accurate

2. Precise

3. Fast

4. Robust

5. Inexpensive

6. Flexible

Candidate technology?

- Single stage calorimeters
 Civinini et al. (2020) PMB
 ProtonVDA Inc.
- Multistage calorimeters
 Bashkirov et al. (2016) Med. Phys.
- Range telescopes
 Sadrozinsky et al. (2013) Med. Phys.
- Tracking telescopes
 - Pettersen et al (2019) Phys. Med.
 - Esposito et al. (2018) Phys. Med.
- Time-of-Flight
 - Worstell et al. (2019) SPIE
- Single plane detector
 Gehrke et al. (2017/2018) PMB

Intrinsic noise properties

Following Bashkirov et al. (2016) Med. Phys.

Intrinsic noise properties

Following Bashkirov et al. (2016) Med. Phys.

• SS-Calorimeter:

$$R_{res} = aEp$$

$$\sigma_{Rres} = p \frac{\sigma_E}{E} Rr_{es}$$

- MS-Calorimeter:
 Stages crossed add to W₀
- Range telescope:

 $\sigma_{Rres} = \Delta Slab/\sqrt{12}$

Intrinsic noise properties: Time of Flight detector

• ToF:

$$R_{res} = aEp$$

$$\sigma_{Rres} = p \frac{\sigma_E}{E} Rr_{es}$$
$$\frac{\sigma_E}{E} = \frac{\gamma^3 m v^2}{t} \frac{\sqrt{2}\sigma_t}{E}$$

Intrinsic noise properties: Time of Flight detector

Intrinsic noise properties: Time of Flight detector

Intrinsic noise properties: Energy modulation

9/17/21 | 14

9/17/21 | 15

- Volz et al. (2018) PMB

- TOPAS MC simulations
- based on Piersimoni et al. (2018) Med. Phys.
- Scintillation light quenching in Sim;
- Energy/time res. post hoc: $2\%\sigma_{\rm E}$; $\sigma_{\rm t}$ =64ps
- 5x10⁵ primaries, 200 MeV/u, flat field

ToF (+dE)

	5-stage
TP	47.7%
TN	45.8%
FP	4.2%
FN	2.3%

TP = not filtered, primary FP = not filtered, secondary TN = filtered, secondary FN = filtered, primary

9/17/21 | 19

HeRads of head phantom

- Setup based on Piersimoni et al. (2018) Med. Phys.
- Digital ped. head from Giacometti et al. (2017) Med. Phys.
- Calibration following Schultze et al. (2021) IEEE

HeRads of head phantom

5-stage Cal.

10-stage Cal.

TOF

HeRads of head phantom

Artifacts for multistage designs

 Simulated and experimental radiograph of a water phantom compared to ground truth.
 Bashkirov et al. (2016) Med. Phys.

Recent improvements by Dickmann et al. (2021) Phys. Med.

Conclusions

- Multi-stage design offer high precision... but suffer artifacts and lack acquisition speed
- Single stage detectors avoid artifacts... but lack precision and speed
- Binary range telescopes are precise and accurate... but lack intrinsic filtering capabilities
- ToF detectors are fast and reduce primary loss... but require very high time resolution

A bit inconclusive... Maybe range telescopes?

Backup

Lennart Volz I.volz@gsi.de

9/17/21 | 25