TOPAS-nBio Simulation of Radiation Chemistry Following FLASH Irradiation Including Reactions of Biological Importance

<u>Magdalena Grochowska^{a,b}, Antoni Ruciński^a, Beata Brzozowska^b, Omar García-García^c, Reinhard Schulte^d and José Ramos-Méndez^e</u>

mm.grochowska3@student.uw.edu.pl

^a Institute of Nuclear Physics PAS, Poland

- ^b University of Warsaw, Poland
- ^c Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla
- ^d Loma Linda University, CA, USA

^e Department of Radiation Oncology, University of California San Francisco, CA, USA

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

University of California San Francisco

Presentation outline

- 1. INTRODUCTION
- 2. PURPOSE
- 3. METHODS
- 4. RESULTS

Electron FLASH methodology Oxygen depletion hypothesis

- Delivering ≥ 10 Gy dose in a limited number of 1-2 Gy pulses
- Overall time ≤ 100 ms
- These high dose rates of irradiations have been shown to reduce radiation damage of healthy tissues, but not the tumor

- **Oxygen depletion** is one of the most commonly mentioned hypothesis to elucidate the FLASH effect
- In healthy tissues, the O₂ is depleted in a great extent, so that cells ares made transiently hypoxic and thus radioresistant
- In **tumor cells**, the O₂ difference is much smaller, therefore the TCP is maintained at similar level than in conventional radiotherapy CONV-RT

R. Labarbe et al. (2020) "A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect", Radiotherapy and Oncology 153: 303 J. D. Wilson et al. (2020) "Ultra-High dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?", Front. Oncol. 9: 1563

Purpose

• Does the addition of biologically relevant moieties change the final O₂ concentration under FLASH vs. CONV conditions?

PURE WATER MODEL

Adapted from: Wardman P. Radiotherapy Using High-Intensity Pulsed Radiation Beams (FLASH): A Radiation-Chemical Perspective. *Radiat Res.* 2020 May 20.

Purpose

• Does the addition of biologically relevant moieties change the final O2 concentration under FLASH vs. CONV conditions?

Methods: Introducing biological models into TOPAS-nBio simulations

el

• Water radiolysis reactions ⁽¹⁾ and:

$$e_{aq}^{-} + O_2 \rightarrow O_2^{-}$$

 $H^{\bullet} + O_2 \rightarrow HO_2^{-}$

Reactions for simulation of radiolysis in pure liquid water.

	and the second sec						
Reaction	k _{obs} (/M/s)						
$e_{aq}^{-} + e_{aq}^{-} \rightarrow H_2 + OH^{-}$	5.5 x 10 ⁹						
$e^{aq} + H_3O^+ \rightarrow H^{\bullet}$	2.3 x 10 ¹⁰						
$e_{aq}^{-} + H^{\bullet} \rightarrow H_2 + OH^{-}$	2.5 x 10 ¹⁰						
$e_{aq}^{-} + OH \rightarrow OH^{-}$	3.0 x 10 ¹⁰						
$e_{aq}^{-} + H_2O_2 \rightarrow OH^{-} + OH^{-}$	1.1 x 10 ¹⁰						
$H_3O^+ + OH^- \rightarrow H_2O$	14.3 x 10 ¹⁰						
$H^{\bullet} + H^{\bullet} \rightarrow H_2$	7.8 x 10 ⁹						
$H^{\bullet} + {}^{\bullet}OH \rightarrow H_2O$	1.55 x 10 ¹⁰						
$H^{\bullet} + H_2O_2 \rightarrow {}^{\bullet}OH + H_2O$	9.0 x 10 ⁷						
$^{\circ}OH + ^{\circ}OH \rightarrow H_2O_2$	5.5 x 10 ⁹						

⁽¹⁾ Pimblott S (1992) *J. Phys. Chem.* **96** 4485–91 ⁽²⁾ Howard B and Michaels (1978) *Rad. Res.* **74** 23-34

Methods: Introducing biological models to TOPAS-nBio simulations

Methods: Introducing biological models to TOPAS-nBio simulations


```
DNA + e_{aq} \rightarrow DNA^{\circ}
DNA + H<sup>•</sup> \rightarrow DNA^{\circ}
DNA + OH<sup>•</sup> \rightarrow DNA-OH adduct
DNA-OH adduct + O2 \rightarrow DNA-OO
```

 $\begin{array}{l} \mathsf{RNA} + \mathsf{e}_{\mathsf{aq}} \to \mathsf{RNA}^{*} \\ \mathsf{RNA} + \mathsf{H}^{*} \to \mathsf{RNA}^{*} \\ \mathsf{RNA} + \mathsf{OH}^{*} \to \mathsf{RNA}^{*} \end{array}$

```
Proteins+ e_{aq} \rightarrow Proteins *
Proteins + H* \rightarrow Proteins *
Proteins + OH* \rightarrow Proteins *
```

Amino Acids + $e_{aq} \rightarrow$ Amino Acids * Amino Acids + H[•] \rightarrow Amino Acids * Amino Acids + OH[•] \rightarrow Amino Acids

```
Free Nu + e_{aq} \rightarrow Free Nu <sup>•</sup>
Free Nu + H<sup>•</sup> \rightarrow Free Nu <sup>•</sup>
Free Nu + OH<sup>•</sup> \rightarrow Free Nu <sup>•</sup>
```

```
(Nu = Nucleotides)
```

⁽¹⁾ Pimblott S (1992) J. Phys. Chem. 96 4485–91
 ⁽²⁾ Howard B Michaels and John Hunt (1978) Rad. Res. 74 23-34

Methods: TOPAS-nBio Monte Carlo track-structure simulations

- An extension of TOPAS tool for sub-cellular simulations.¹
- Simulates the physical and chemistry stages of water radiolysis.
- The physical and pre-chemical stage of irradiation inherit the parameters provided by Geant4-DNA.²
- For chemistry, TOPAS-nBio version for this project uses Independent Reactions Time (IRT) with inter-track simulation capability.³

credits:https://gray.mgh.harvard.edu/research/software/258-topas-nbio

PULSE PARAMETERS

- The simulations were carried out for the three different models
- Total doses **up to 60 Gy** were used in 10 Gy steps⁴
- The system was irradiated by **1 MeV electron beam.**

Mode	Dose Rate (Gy * s ⁻¹)	Dose (Gy)	Pulse frequency (Hz)	Pulse width (µs)	Number of pulses	Treatment time (s)
CONV	0.29	10-60	10	1.0	350-2075	36-210
FLASH	500	10-60	100	1.75-1.9	2-12	0.01-0.11

¹ Schuemann J et al., (2019) Rad. Res. 191 125-138.

- ² Ramos-Méndez J et al., (2018) Phys. Med. Biol. 63 105014 12pp.
- ³ Ramos-Méndez J et al., (2020) Rad. Res. **194** 351-362.
- ⁴ P. Montay-Gruel et al. (2019) Proc Natl Acad Sci. USA. **116**(22):10943-10951

RESULTS

Results: time evolution of O2

THE RESULTS FOR MODEL2 ARE STILL BEING ELABORATED

Ramos-Mendez et al., "LET-dependent intetrack yields in proton irradiation at ultra-high dose rates relevant for FLASH radiotherapy" Rad. Res. 194:351-362 (2020).

Results: time evolution of H2O2

Results: O2 depletion

Model 0 CONV-RT
Model 0 FLASH-RT

Conclusions/summary

SIMULATIONS PERFORMED IN PURE WATER DO NOT REFLECT THE RADIATION CHEMISTRY GOING ON IN BIOLOGICAL SYSTEMS

- In this work we implemented three models to evaluate the chemical yields produced by low and high-dose rates.
- It was found that additional biological material affects significantly the yields compared to a pure liquid water model.
- The addition of a more detail model including more biological material affects the total yield of products like H₂O₂ and O₂.

ACKNOWLEDGMENTS:

-Peter Wardman, Ph.D. -CONACyT, MEX. -NIH/NCI grant no. R01 CA187003