The open-source Treatment Planning Toolkit "matRad"

Introduction & Update on ongoing Developments and related Projects

Niklas Wahl

Group Radiotherapy Optimization Department of Medical Physics in Radiation Oncology

DKFZ Heidelberg

Research for a Life without Cancer

Treatment Planning

- computerized process
- dose is numerically simulated and optimized

Commercial solutions are closed systems (Black Box)

Research needs flexible, accessible software

Examples for research topics:

Biological Optimization

(RBE, effect, mixed-modality)

- Probabilistic dose calculation & optimization
- \rightarrow low-level access to dose calculation / optimization needed

- toolkit for three-dimensional intensity-modulated treatment planning for photons, protons and carbon ions
- Entirely written in Matlab & open source
- matRad implements well-established radiotherapy algorithms for research & education

Properties:

- open-source code, patients and machine files on GitHub
- graphical user interface
- Non-linear constrained dose optimization (IPOPT)
- Import & export functionalities (DICOM, binary formats)
- No Matlab? → Octave compatibility & downloadable standalone

www.matrad.org

Team

dkfz.

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

Heidelberger ionenstrahl-Therapiezentrum

DEUTSCHE Forschungsgemeinschaft

BA 2279/3-1 WA 4707/1-1

DKFZ Development team

Niklas Wahl Lucas Burigo Amit Ben Antony Bennan Noa Homolka Oliver Jäkel

HIT cooperation

Benjamin Ackermann Swantje Ecker Malte Ellerbrock Andrea Mairani Thomas Tessonnier Katia Parodi (LMU Munich)

Advisors

Martin Siggel Peter Ziegenhein Alumni

Mark Bangert Hans-Peter Wieser Eduardo Cisternas Ahmad Neishabouri Cindy Herman Thomas Klinge Verena Böswald Henning Mescher Alexander Stadler Guiseppe Pezzano Lucas-Raphael Müller Hubert Gabrys Silke Ulrich Oliver Schrenk Paul Meder

Other Contributors

Eric Crhistiansen (Carleton University) Steven van de Water (PSI)

H.-P. Wieser *et al.* (all authors above in **bold**), "Development of the open-source dose calculation and optimization toolkit matRad," *Med Phys*, vol. 44, no. 6, pp. 2556–2568, 2017, doi: <u>10.1002/mp.12251</u>.

All Code Contributors: https://github.com/e0404/matRad/blob/master/AUTHORS.txt

More than 25 confirmed institutes somehow working with matRad

Start: 22. Januar 2015

9/22/2021 | Slide 6 | Niklas Wahl | n.wahl@dkfz.de | 7th Loma Linda Workshop | matRad

More than 25 confirmed institutes somehow working with $matRad\hat{\sim}$

	⊕ 0404 / matRad ■ Unstar 123 ♥ Fork 118	2015					
• Githu	<> Code 💽 Issues 18 11 Pull requests 5 🖓 Discussions 🕞 Actions 🛄 Projects 3 🕮 Wiki 😲 Security 🗠 Insights 🕸 Settings	1					
	Filters • Q is:issue is:open New issue						
	□ ⊙ 18 Open ✓ 183 Closed Author → Label → Projects → Milestones → Assignee → Sort →						
University of	[Feature Request] Separate dose threshold for matRad_gammaIndex enhancement #515 opened 21 days ago by wahin	CANBERRA HOSPITAL AND HEALTH SERVICES					
Florida	Question about VMAT branches bug question #499 opened on 31 Mar by chh105						
🖀 Carlet	question about the dij structure enhancement question #477 opened on 11 Jan by chh105	University of					
Canada's Capital Univ	Image: Color-Scale in GUI wrong after re-optimization with different number of fractions #472 opened on 28 Dec 2020 by wahln						
HIT	Sensible structure set resampling for optimization? enhancement question #462 opened on 6 Nov 2020 by wahin						
Heidelberger Ionenstrahl-Therapiezentrum	matRad has issues with 2D patients bug enhancement #324 opened on 23 Jan 2019 by wahln	UNIVERSITÄT HEIDELBERG ZUKUNFT					
	Continue GUI development with MATLAB guide or switch to code? enhancement help wanted question #294 opened on 19 Sep 2018 by wahln	SEIT 1386					
	DICOM import of Raystation PBS plans enhancement help wanted #280 opened on 19 Jul 2018 by sebastianuber	UNIVERSITY OF TERN AUSTRALIA					

Current Release "Blaise" 2.10.1

• 3D dose calculation (validated)

Photons:	SVD pencil-beam algorithm + sequencing					
	MC interface to ompMC (open source)					
Protons:	Pencil-Beam algorithm + const. RBE					
	MC interface to MCsquare (open source)					
Carbon ions:	Pencil-Beam algorithm + biol. effect / RBE					

Base data

Patient data (CORT data set) & DICOM Import

Physical (& biological) base data for photon LINAC as well as a proton and a carbon machine

- Inverse planning with new optimization interface
 - Photons: Physical dose optimization & DAO
 - Protons: + Constant RBE optimization
 - Carbon-ions: + RBE (1.1 or variable) or effect optimization
- Scripting & Graphical User Interface

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Research Article 🙃 Open Access 💿 😧 😒

Development of the open-source dose calculation and optimization toolkit matRad

Hans-Peter Wieser 🔀, Eduardo Cisternas, Niklas Wahl, Silke Ulrich, Alexander Stadler, Henning Mescher , Lucas-Raphael Müller, Thomas Klinge, Hubert Gabrys, Lucas Burigo, Andrea Mairani, Swantje Ecker, Benjamin Ackermann, Malte Ellerbrock, Katia Parodi, Oliver Jäkel, Mark Bangert

Wieser et al., 2017, Med Phys 44(6) among top 20 downloaded Med Phys papers in 2017

Validation against Syngo Siemens - γ-index > 99.67% (2%,2%)

modality	setting	#beams	#bixel	D_{ij} elem.	D_{ij} size	t_{dose}	#iter.	t_{opt}
-				[1e6]	[GB]	$[\mathbf{s}]$		$[\mathbf{S}]$
photons	$82 \mathrm{mm} D_{ij} \mathrm{samp.}$	4	2608	172	2.75	295	145	82
$\operatorname{photons}$	40 mm no samp.	4	2608	99	1.59	101	143	44
photons	$82 \mathrm{mm} D_{ij} \mathrm{samp.}$	8	3877	426	6.81	741	51	140
$\operatorname{photons}$	40 mm no samp.	8	3877	236	3.77	226	51	66
photons	$40 \text{ mm } D_{ij} \text{ samp.}$	72	13597	567	9.07	853	147	407
protons	$99.75\%~\mathrm{SG}$	1	7797	19	0.29	22	123	41
protons	$99.75\%~\mathrm{DG}$	1	5955	87	1.38	46	171	109
protons	$99.75\%~\mathrm{SG}$	3	28097	56	0.89	68	67	187
protons	$99.75\%~\mathrm{DG}$	3	24137	269	4.30	160	262	330
protons	$99.75\%~\mathrm{SG}$	2	45574	116	1.86	97	218	137
protons	$99.75\ \%\ \mathrm{DG}$	2	27683	520	8.33	299	197	486
carbon	$99.75\%~\mathrm{SG}$	1	11780	160	2.55	67	72	92
carbon	$99.75\ \%\ \mathrm{DG}$	1	9963	537	8.61	203	79	225
carbon	$99.75\%~\mathrm{SG}$	3	42810	411	6.68	310	117	193
carbon	$99.75\ \%\ \mathrm{DG}$	3	31205	756	12.1	560	107	365
carbon	99.75% SG	2	24612	336	5.88	137	177	273
carbon	$99.50~\%~\mathrm{DG}$	2	16889	855	17.94	472	134	521

Performance of matRad - Intel Core i7 2.8 GHz, 32 GB RAM

Throughput Optimization: 6 GB/s

Development & Research Branches → **Hopefully in the next release**

- Helium base data (physical & biological) -dev_varRBErobOpt
- Robust / probabilistic optimization & uncertainty quantification

-dev_varRBErobOpt

- Variable RBE & effect for protons -dev_varRBErobOpt
- New GUI (Object-oriented & modular, Octave compatible) -dev_classGUI
- Extended MC interfaces (presented last year by Lucas) -dev_MonteCarlo
- External contributions:
 - VMAT -dev_VMAT(Eric Christiansen)
 - optimization -dev_exactOpt (Steven van de Water)

Proton plan with MCsquare 2e4 histories/beamlet, 4689 beamlets 120 min at (2.5mm)³ resolution

Evaluated on Desktop PC, i7-6700 @ 3.4 GHz (4 cores +HT)

Software Development:

- Unit Testing Framework for Core Functionality
- Python Interface
- Refactoring code for modularization

Future:

- Research Software Engineer position funded by DFG (3 years, WA 4707/1-1)
 - Further professionalization (CI)
 - Helpdesk & Community building
 - ML / AI functionality
 - Interfaces to other open-source software

Research-oriented:

- NTCP models & optimization
- Carbon Monte Carlo & Lung degradation
- Joint / mixed-modality / spatio-temporal optimization
 → Presentation by Amit
- Proton FLASH Planning Tools
- Efficient many-scenario probabilistic planning based on variance objectives
- Superiorization for Inverse Planning

 Presentation by Florian

Example matRad Projects

9/22/2021 | Slide 14 | Niklas Wahl | n.wahl@dkfz.de | 7th Loma Linda Workshop | matRad

Example Project: MC Dose Uncertainty Quantification (P. Stammer, KIT / DKFZ)

 Avoid computation of explicit error / sample scenarios for robustness analysis and robust optimization with Monte Carlo codes

 \rightarrow Re-weighting of histories of a single simulation for uncertainty estimation

• Input Uncertainty modeling of static & time-dependent beam application/movement patterns using pencil beam correlations

(a) Prostate (b) Liver Estimates of expected dose and variance using the reweighting approach and their difference to a reference [1]

Dose standard deviation in a waterbox for random vs. periodic movement pattern / interplay during treatment

Other Involvments at KIT:

- Development of KiT-RT: A Kinetic Transport Solver for Radiation Therapy (https://github.com/CSMMLab/KiT-RT)
- (Dynamical) low rank methods for more time and space
 efficient UQ in radiative transport

[1] Stammer, P., Burigo, L., Jäkel, O., Frank, M., & Wahl, N. (2021). Efficient uncertainty quantification for Monte Carlo dose calculations using importance (re-) weighting. https://arxiv.org/abs/2106.11885

Example Project – Biological dose degradation in lung tissue (N. Homolka)

Sub-voxel microstructures degradation in Lung in general not captured in deterministic and MC dose calculation

0.6

density [g/cm³]

0.8

1

0.4

Figure 2: Pencil beam simulations showing the distinct underdosage of the target and overdosage at the distal edge.

n=5,p=0.6

Can be approximated with voxel density & material sampling techniques or analytical convolution techniques n=3,p=0.25

0.4

probability 0.3 0.2

0.1

0

0.2

Figure 3: Normalized histogram for 3 different n=10,p=0.9 cases for "number of structures in 1 voxel" and "density of that voxel"

Figure 2: Waterphantom with slab of lung copied from real patient (a), phantom with binomially sampled lung (b), and calculated dose slice averaged over 100 samples (c).

Example Education & Outreach: Particle Therapy Master Class

- Shall become part of the "International Masterclasses Hands on Particle Physics" (<u>https://physicsmasterclasses.org/</u>)
- Educational course for school children
- Introduced by DKFZ/GSI/CERN (Main coordination: Yiota Foka, at DKFZ: Niklas & Joao)
 - → First successful stresstests in April 2019 & 2021

Conclusion

- matRad is an open-source treatment planning toolkit with focus on research & education
- Used within internal & external research projects / collaborations
- Dose calculation & treatment planning for photons, protons, helium and carbon (including base data & data import)
- Active, often research-oriented, development (internal & external)
 - Monte Carlo interfaces
 - new modalities / optimization techniques
- Efforts in professionalizing software development (i. e., continuous integration)

How to get going with matRad?

- 1. Go to our page on GitHub: www.matRad.org
- 2. Download the Code, or even better: Familiarize with git and Clone
- 3. Checkout the UI & the code
 - matRadGUI.m & matRad.m
 - many examples in the examples / folder
 - Wiki on GitHub: https://github.com/e0404/matRad/wiki
- 4. Ask us from E040-4 for help
- 5. Profit (and contribute)!

www.matrad.org

Data IO DICOM *.nrrd, *.mha, *.vtk CERR VOXELPLAN

Dose calculation

Photons

SVD pencil beam ompMC interface

Particles

IMPT pencil beam MCSquare interface TOPAS interface Analytical probabilistic modeling

Analysis & visualization

GUI CT & dose distribution browser Dose statistics DVHs

Dose optimization

Fluence and experimental direct aperture optimization IPOPT https://projects.coin-or.org/Ipopt Matlab's proprietary fmincon Superiorization Objectives: Quad. dose deviation, mean dose, EUD, DVH Constraints: Min, max, mean dose, EUD, DVH Xia, Engel, Siochi MLC sequencer Robust and stochastic optimization Variable RBE optimization for protons Coverage based optimization Analytical probabilistic modeling VMAT

Base data

Patient data (CT & RTSS) Photon pencil beam base data → https://github.com/e0404/photonPencilBeamKernelCalc Generic proton and carbon ion pencil beam base data Carbon ion biological base data (LEM IV) Helium pencil beam base data Helium biological model

Thank you for your attention!

Features in blue are available on development branches

