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Introduction

• Pulse radiolysis irradiation has been the primary tool for exploring radiation chemistry on 
the past decades.

• Nowadays, the so-called FLASH irradiation has been proposed to be used for oncological 
applications since there are evidence that normal tissue is spared with ultra-high dose 
rates irradiation: the flash effect.*

• However, the underlying mechanism of the FLASH effect that cause this effect (e.g., as 
oxygen depletion) are yet to be fully understood.

• The radiation chemistry perspective could offer a fundamental explanation from first 
principles.
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*Montay-Grue P., Petersson K., et al. (2017), Vozenin M-C., De Fornel P. (2018)  



Background

• Pure water has been used as an 
approximation for the cellular 
environment

• From physical perspective water seems 
like a reasonable approach for the 
ionizations in the medium since water is 
~80% of the cell constituent*.

• However, for the chemical reactions 
between biomolecules and radiolysis 
chemical species inside the cell this 
model is insufficient.

Imagen taken from: Zhang J.et al (2017) The Translationally Controlled 
Tumor Protein and the Cellular Response to Ionizing Radiation-Induced
DNA Damage.
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* Zhang J. et al, (2017)



Current Models 
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Imagen taken from: Labarbe R. et al (2020) A physicochemical model of 
reaction kinetics supports peroxyl radical recombination as the main 
determinant of the FLASH effect
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Current Models
!"#$%&'( !"#$%&'( !#%"

RH + H → R -./ = 1×104/67

RH + e9:; → Rd -.=>?@ = 1.4×104/67

OH + GSH → H2O + GS -.G/ = 1×104/67

OH + RH → R -HI = 1×10J/67

R + GSH → RH + GS -.K = 300/7

R + R → 2R -.IK = 5×10N/67

R + OI → ROO -HO = 5×10N/67

ROO + XSH → ROOH + XS -.KGG = 0.0408/7

2ROO → OI + ROH + RO -R=ST = 1×10U/67

ROO + RH → ROOH + R -HVV = 20/67

Data taken from: Labarbe R. et al (2020) A physicochemical model 
of reaction kinetics supports peroxyl radical recombination as the 
main determinant of the FLASH effect

Models have been proposed on the 
past: Spitz D. R., Buettner G. R. et al 
(2019) LaBarbe R., Hotoiu L. et al 
(2020) 

We can take them as a starting point 
to explore further aspects. 
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Propose a multiscale model

A model for the cellular environment should contemplate some general 

milestones*:

• Intertrack reactions and heterogeneous chemistry.

• Specific for time scales of interest.

• Consider the oxygen concentration and consumption. 

• Scavenging capacity of the environment .

• Follow relevant products of scavenged species.

Koch C. J. (2019), Wardman P. (2020)* 
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Time scale of interest

• “In irradiated cells or tissue, oxygen is 
therefore likely to be consumed largely 
via the formation of transient peroxyl 
radicals (!""⦁) formed in diverse 
secondary reactions”*

• “!⦁ fades away in complete absence of "$ with a half-reaction time of 500µs in 
bacteria and less than 5 ms in 
mammalian cells.”*

• The mean survival time of relevant 
radicals may indicate a good time-span 
for a model 
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Time stages for living tissue irradiation response. Image obtained 
from: McMahon S. & Prise K. (2019).* Labarbe R. et al (2020)



Heterogeneous and homogeneous stages

• The complete scheme of reactions 

for the radiolysis of water is ~80 

reactions long [Pastina B. & 

LaVerne J. A. (2001)]

• However, at the early stages of the 

irradiation we can use  a reduced 

scheme that describes all the early 

reactions

• We can apply this logic to the 

proposed model in order to obtain 

a more compact one

!"#$%&'( !"#$%&'( )#%"
e+,- + e+,- → 01 + 120- 5.5×108/:;

0< + e+,- → = 2.3×10@A/:;
0 + e+,- → 01 + 20- 2.5×10@A/:;
20 + e+,- → 20- 3.0×10@A/:;

0121 + e+,- → B= + 20- 1.1×10@A/:;
0< + 20- → 01B 1.4×10@@/:;
0 + 0 → 01 7.8×108/:;

0 + B0 → 012 2.0×10@A/:;
0121 + 0 → 01B + B= 9.0×10G/:;

B= + B= → 0121 5.5×108/:;

Data taken from: LaVerne J. A. & Pimblott S. M. (1993) Yields of Hydroxyl Radical and 

Hydrated Electron Scavenging Reactions in Aqueous Solutions of Biological Interest
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J. Ramos-Méndez, N. Domínguez-Kondo et al (2020) LET-
Dependent Intertrack Yields in Proton Irradiation at Ultra-High 
Dose Rates Relevant for FLASH Therapy

Ramos-Méndez  J.,  LaVerne JA. Et al (on revision) 
TOPAS-nBio validation forsimulating water radiolysis 
andDNA damage under Low-LET irradiation.

Combine all the 
elements!

von Sonntag C. (2006) Free-Radical-Induced DNA 
Damage and Its Repair (Chapter 8 Peroxyl Radicals) 

Push the time limit further

Wardman P. & D-Clarke E. (1976) Oxygen 
Inhibition of Nitroreductase: electron transfer 
from nitro radical-anions to oxygen

Add detailed reactions schemes

It can be too much for 
MC methods!

We can use specialized 
software to handle it



• We can coupe results from 
TOPAS at the end of the 
heterogeneous stage (~1!") 
and then use software capable 
of solving concentration 
differential equations (such as 
Kinetiscope) so it can give us 
longer time scales considering 
the homogeneous chemical 
stage  (>100 s)  
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Future Work

• We Will follow the present strategy to develop a robust cellular 
environment model.

• At the same time we will need to take a deep look on the 
experimental data compiled for decades in order to obtain the 
chemical parameters required.
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