The Douglas-Rachford algorithm for inconsistent optimization problems: the complete story

Speaker: Walaa M. Moursi
Department of Combinatorics and Optimization, University of Waterloo Waterloo, ON, Canada

> Based on joint works with

Heinz H. Bauschke
Mathematics, University of British Columbia
Kelowna, B.C., Canada

The 7 ${ }^{\text {th }}$ Annual Loma Linda workshop 2021 on Particle Imaging and Radiation Therapy.

Monday August 2, 2021 via Zoom
11:00-11:30 am EDT

The setting

Throughout this talk

X is a real Hilbert space

with inner product $\langle\cdot \mid \cdot\rangle$, and induced norm $\|\cdot\|$, e.g., \mathbb{R}^{n}, \mathbb{S}^{n} or ℓ^{2}.

- Recall that an operator $A: X \rightrightarrows X$ is monotone if

$$
\{(x, u),(y, v)\} \subseteq \operatorname{gr} A \Rightarrow\langle x-y \mid u-v\rangle \geq 0
$$

- Recall also that a monotone operator A is maximally monotone if A cannot be properly extended without destroying monotonicity.
- Examples: Matrices with positive semidefinite parts, subdifferential operators ∂f of convex functions and skew symmetric operators, e.g.,

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

The problem

Throughout the talk we assume that

$$
A \text { and } B \text { are maximally monotone operators on } X \text {. }
$$

The problem:
Find $x \in X$ such that
(P)

$$
x \in \operatorname{zer}(A+B)=(A+B)^{-1}(0)
$$

The Douglas-Rachford algorithm: One successful technique to find a zero of $A+B$ is via iterating the Douglas-Rachford operator $T_{A, B}$ defined for the ordered pair (A, B) by

$$
T_{A, B}=\frac{1}{2}\left(\mathrm{Id}+\mathrm{R}_{B} \mathrm{R}_{A}\right) .
$$

- Id $: X \rightarrow X: x \mapsto x . \bullet \mathrm{R}_{A}:=2 \mathrm{~J}_{A}-\mathrm{Id}=2(\mathrm{Id}+A)^{-1}-\mathrm{Id}$.

Motivation

The problem:
(P)

Find $x \in \mathbb{R}^{n}$ such that x minimizes $f+g$.

- Suppose that f and g are smooth. Then (P) is equivalent to

$$
\text { find } x \in X \text { such that } 0=\nabla(f+g)(x)=\nabla f(x)+\nabla g(x)
$$

- If we drop the assumption of smoothness, (P) reduces to

$$
\text { find } x \in X \text { such that } 0 \in \partial(f+g)(x)=\partial f(x)+\partial g(x)
$$

where $\partial f(x)=\left\{u \in \mathbb{R}^{n} \mid(\forall y)\langle u, y-x \mid+\rangle f(x) \leq f(y)\right\}$.

Example of Constraint Qualifications (CQs): • $\operatorname{dom} f \cap \operatorname{int} \operatorname{dom} g \neq \varnothing$.

Examples

The problem:
(P)

Find $x \in \mathbb{R}^{n}$ such that x minimizes $f+g$.
Let U be a nonempty closed convex subset of X. Recall that the indicator function of U, denoted by ι_{U}, is defined by

$$
\iota_{U}(x)= \begin{cases}0, & x \in U \\ +\infty, & \text { otherwise }\end{cases}
$$

- Constrained convex optimization problem:
$\left.\begin{array}{l}\text { minimize } f(x) \\ \text { subject to } x \in U\end{array}\right\} \longrightarrow$ find $x \in \mathbb{R}^{n}$ such that x minimizes $f+\iota_{U}$.
- Convex feasibility problem:
find x such $x \in U \cap V \longrightarrow$ find $x \in \mathbb{R}^{n}$ such that x minimizes $I_{U}+\iota_{V}$.

Classical convergence results

Let $x_{0} \in X$. Recall that when

$$
\operatorname{zer}(A+B)=(A+B)^{-1}(0) \neq \varnothing
$$

we have:

- Lions-Mercier (1979)

$$
x_{n}=T^{n} x_{0} \xrightarrow{\text { weakly }} \text { some point } \bar{x}=T \bar{x} \in \operatorname{Fix} T \neq \operatorname{zer}(A+B) .
$$

- Combettes (2004) $\mathrm{J}_{A}(\operatorname{Fix} T)=\operatorname{zer}(A+B)$. Consequently,

$$
\operatorname{Fix} T \neq \varnothing \Leftrightarrow \operatorname{zer}(A+B) \neq \varnothing .
$$

- Svaiter (2009)

$$
\mathrm{J}_{A} T^{n} x_{0} \xrightarrow{\text { weakly }} \mathrm{J}_{A} \bar{x} \in \operatorname{zer}(A+B) \text {. }
$$

- $\mathrm{J}_{A}:=(\mathrm{Id}+A)^{-1}$. $\bullet \mathrm{R}_{A}:=2 \mathrm{~J}_{A}-\mathrm{Id} . \bullet T:=\mathrm{Id}-\mathrm{J}_{A}+\mathrm{J}_{B} \mathrm{R}_{A}$.

Classical convergence results: function version

Let $x_{0} \in X$. Recall that when

$$
\operatorname{zer}(\partial f+\partial g)=(\partial f+\partial g)^{-1}(0) \neq \varnothing
$$

we have:

- Lions-Mercier (1979)

$$
x_{n}=T^{n} x_{0} \xrightarrow{\text { weakly }} \text { some point } \bar{x}=T \bar{x} \in \operatorname{Fix} T \neq \operatorname{zer}(\partial f+\partial g)
$$

- Combettes (2004) $\operatorname{Prox}_{f}($ Fix $T)=\operatorname{zer}(\partial f+\partial g)$. Consequently,

$$
\operatorname{Fix} T \neq \varnothing \Leftrightarrow \operatorname{zer}(\partial f+\partial g) \neq \varnothing \text {. }
$$

- Lions-Mercier-Svaiter

$$
\operatorname{Prox}_{f} T^{n} \times \xrightarrow{\text { weakly }} \text { some point in } \operatorname{argmin}(f+g) .
$$

$\operatorname{Prox}_{f}(x)=\operatorname{argmin}_{y \in X}\left(f(y)+\frac{1}{2}\|x-y\|^{2}\right)$.

DR for two lines in \mathbb{R}^{3}

$$
f=\iota_{U}, g=\iota_{V} \text { and } T=\frac{1}{2}\left(I d+\left(2 P_{V}-I d\right) \circ\left(2 P_{U}-I d\right)\right) .
$$

$U=$ the blue line,
$V=$ the red line,
$\left(T^{n} x_{0}\right)_{n \in \mathbb{N}}=$ the red sequence,
$\left(P \cup T^{n} x_{0}\right)_{n \in \mathbb{N}}=$ the blue sequence.

Convergence results: what if?

Let $x_{0} \in X$. Recall that when

$$
\operatorname{zer}(\partial f+\partial g)=(\partial f+\partial g)^{-1}(0) \neq \varnothing
$$

we have:

- Lions-Mercier (1979)

$$
x_{n}=T^{n} x_{0} \xrightarrow{\text { weakly }} \text { some point } \bar{x}=T \bar{x} \in \operatorname{Fix} T \neq \operatorname{zer}(\partial f+\partial g) .
$$

- Combettes (2004) $\operatorname{Prox}_{f}($ Fix $T)=\operatorname{zer}(\partial f+\partial g)$. Consequently,

$$
\operatorname{Fix} T \neq \varnothing \Leftrightarrow \operatorname{zer}(\partial f+\partial g) \neq \varnothing \text {. }
$$

- Lions-Mercier-Svaiter

$$
\operatorname{Prox}_{f} T^{n} \times \xrightarrow{\text { weakly }} \text { some point in } \operatorname{argmin}(f+g) .
$$

- Question: What happens when zer $(\partial f+\partial g)=\varnothing$?
$\operatorname{Prox}_{f}(x)=\operatorname{argmin}_{y \in X}\left(f(y)+\frac{1}{2}\|x-y\|^{2}\right)$.

The case of infeasible affine subspaces: Example

Figure: A GeoGebra snapshot. Two nonintersecting affine subspaces U (blue line) and V (red line) in \mathbb{R}^{3}. Shown are also the first few iterates of $\left(T^{n} x_{0}\right)_{n \in \mathbb{N}}$ (red points) and $\left(P \cup T^{n} x_{0}\right)_{n \in \mathbb{N}}$ (blue points). In this case $\left\|T^{n} x_{0}\right\| \rightarrow+\infty$ but $\left(P_{U} T^{n} x_{0}\right)_{n \in \mathbb{N}}$ remains bounded!

- The minimal displacement vector

$$
v:=\mathrm{P}_{\overline{\operatorname{ran}}(\mathrm{Id}-T)}(0)
$$

- The normal problem: Find $x \in X$ such that

$$
x \in \operatorname{zer}(-v+A+B(\cdot-v))
$$

- The generalized solution set or the normal solutions

$$
Z=\{x \in X \mid 0 \in-v+A x+B(x-v)\}
$$

Roots in linear algebra: least squares

- Suppose that $X=\mathbb{R}^{n}$, let $A \in \mathbb{R}^{n \times n}$ be such that $A+A^{\top}$ is positive semidefinite (A is maximally monotone!).
- Find $x \in \mathbb{R}^{n}$ such that $A x=b$. Set $B \equiv-b$. The problem reduces to: Find $x \in \mathbb{R}^{n}$ such that

$$
x \in \operatorname{zer}(A+B)
$$

- If $b \notin \operatorname{ran} A$ then we $\operatorname{zer}(A+B)=\varnothing$.
- The minimal displacement vector is

$$
v=-\mathrm{P}_{(\operatorname{ran} A)^{\perp}}(b)
$$

- The normal solutions are the least squares solutions!

Earlier works

Let $x_{0} \in X$. When $\operatorname{zer}(A+B)=\varnothing$ we always have

$$
\left\|T^{n} x_{0}\right\| \rightarrow \infty
$$

Suppose that

$$
v \in \operatorname{ran}(\operatorname{ld}-T)
$$

- Bauschke-Combettes-Luke (2003) proved that when $(f, g)=\left(\iota_{U}, \iota_{V}\right)$, U, V nonempty closed convex subsets of X, then the shadow sequence $\left(\mathrm{P} \cup T^{n} x\right)_{n \in \mathbb{N}}$ is bounded and its weak cluster points are minimizers of the function $\iota_{U}+\iota_{V}(\cdot-v)$ (i.e., normal solutions!).
- Bauschke-M (2015) proved the strong convergence of the shadow sequence with a linear rate and indetified the limit when U, V are closed affine subspaces.
- Bauschke-M (2016) proved the weak convergence of the shadow sequence to a normal solution when U, V nonempty closed convex subsets of X.
- Bauschke-M (2019) proved the weak convergence of the shadow sequence to a normal solution when f is convex lower semicontinuous and proper and $g=\iota_{U}$ where U is a closed affine subspace X under the assumption that $0 \in \operatorname{dom} f^{*}+U^{\perp}$.

Convex feasibility example

A GeoGebra snapshot. U and V are two nonintersecting sets in \mathbb{R}^{2}. Also, the first few iterates of the governing sequence $\left(T^{n} x\right)_{n \in \mathbb{N}}$ (red points) and the shadow sequence $\left(P \cup T^{n} x\right)_{n \in \mathbb{N}}$ (blue points) are shown.

Related works

Of central importance of these results was the following fact:

- Bauschke-Hare-M (2014): Suppose X is finite-dimensional and A and B are nice, e.g., subdifferentials of convex functions f and g respectively. Then

$$
\overline{\operatorname{ran}}(\mathrm{Id}-T)=\overline{\operatorname{dom} f-\operatorname{dom} g} \cap \overline{\operatorname{dom} f^{*}+\operatorname{dom} g^{*}} .
$$

- Ryu-Lin-Yin (2017 and 2018 respectively) proposed a method based on the Douglas-Rachford algorithm that identifies, in certain situations, infeasible, unbounded, and pathological conic (and feasible and infeasible convex, respectively) optimization problems.
- Banjac-Goulart-Stellato-Boyd (2018) showed that for certain classes of convex optimization problems, ADMM can detect primal and dual infeasibility of the problem and they propose a termination criterion.
- Banjac-Lygeros and Banjac (2020) extended some of the geometric properties of the minimal displacement vector established in our 2019 work.

More generally ...

Let $x_{0} \in X$.

- Can we learn more when A and B are nice maximally monotone operators?
- As a first step: Can we characterize when the shadows are bounded?
- Suppose the shadows are bounded. What can we say about the weak cluster points? full convergence??

Our assumptions: A1

We assume that

$$
\overline{\operatorname{ran}}(\mathrm{Id}-T)=\overline{\operatorname{dom} A-\operatorname{dom} B} \cap \overline{\operatorname{ran} A+\operatorname{ran} B} .
$$

True, e.g., when X is finite-dimensional and $(A, B)=(\partial f, \partial g)$.
A1 holds in the optimization settings when X is finite-dimensional. \checkmark

The beautiful geomerty and the vectors v_{D} and v_{R} !

Recall that $\overline{\operatorname{ran}}(\mathrm{Id}-T)=\overline{\operatorname{dom} A-\operatorname{dom} B} \cap \overline{\operatorname{ran} A+\operatorname{ran} B}$. We now introduce the vectors

$$
v_{D}:=\mathrm{P}_{\overline{\operatorname{dom} A-\operatorname{dom} B}}(0) \text { and } v_{R}:=\mathrm{P}_{\overline{\operatorname{ran} A+\operatorname{ran} B}}(0)
$$

We can conclude
(i) $v_{D} \in(-\operatorname{rec} \overline{\mathrm{dom}} A)^{\ominus} \cap(\operatorname{rec} \overline{\mathrm{dom}} B)^{\ominus}$.
(ii) $v_{R} \in(-\operatorname{rec} \overline{\mathrm{ran}} A)^{\ominus} \cap(-\mathrm{rec} \overline{\mathrm{ran}} B)^{\ominus}$.

- rec $C=\{x \in X \mid x+C \subseteq C\} . \bullet C^{\ominus}=\{u \in X \mid \sup \langle C \mid u\rangle \leq 0\}$.

Fact
Let U and V be nonempty closed convex subsets of X. Then

$$
\mathrm{P}_{\overline{U-V}}(0) \in \overline{\left(\mathrm{P}_{U}-\mathrm{Id}\right)(V)} \cap \overline{\left(\mathrm{Id}-\mathrm{P}_{V}\right)(U)} \subseteq(-\mathrm{rec} U)^{\ominus} \cap(\mathrm{rec} V)^{\ominus} .
$$

The beautiful geomerty

The following lemma is of crucial importance in our work.
Lemma
The following hold for A and B :
(i) $(\operatorname{rec} \overline{\operatorname{dom}} A)^{\ominus} \subseteq \operatorname{rec}(\overline{\operatorname{ran}} A)$ and $(\operatorname{rec} \overline{\operatorname{dom} B} B)^{\ominus} \subseteq \operatorname{rec}(\overline{\operatorname{ran}} B)$.
(ii) $(\operatorname{rec} \overline{\operatorname{ran}} A)^{\ominus} \subseteq \operatorname{rec}(\overline{\operatorname{dom}} A)$ and $(\operatorname{rec} \overline{\operatorname{ran}} B)^{\ominus} \subseteq \operatorname{rec}(\overline{\operatorname{dom} B})$.

Proof.
Using the celebrated Brezis-Haraux theorem

$$
\overline{\operatorname{ran}} A+\overline{\operatorname{ran}} N_{\overline{\operatorname{dom}} A} \subseteq \overline{\operatorname{ran} A+\operatorname{ran} N_{\overline{\operatorname{dom}} A}}=\overline{\operatorname{ran}}\left(A+\mathrm{N}_{\overline{\operatorname{dom} A} A}\right)=\overline{\operatorname{ran}} A
$$

and we conclude that

$$
\overline{\operatorname{ran}} \mathrm{N}_{\overline{\operatorname{dom}} A} \subseteq \operatorname{rec} \overline{\operatorname{ran}} A
$$

On the other hand, using a result by Zarantonello we have

$$
\overline{\operatorname{ran}} \mathrm{N}_{\overline{\operatorname{dom}} A}=\overline{\operatorname{ran}}(\mathrm{Id}-\mathrm{P} \overline{\operatorname{dom} A})=(\operatorname{rec} \overline{\operatorname{dom}} A)^{\ominus} .
$$

- $\operatorname{rec} C=\{x \in X \mid x+C \subseteq C\} . \bullet C \ominus=\{u \in X \mid \sup \langle C \mid u\rangle \leq 0\}$.

The beautiful geomerty and locating v_{D} and v_{R} !

Proposition

The following hold:

(i) $v_{D} \in(-\operatorname{rec} \overline{\operatorname{dom}} A)^{\ominus} \cap(\operatorname{rec} \overline{\operatorname{dom}} B)^{\ominus}$.
(ii) $v_{D} \in(-\operatorname{rec} \overline{\operatorname{ran}} A) \cap(\operatorname{rec} \overline{r a n} B)$.
(iii) $v_{R} \in(-\operatorname{rec} \overline{\mathrm{ran}} A)^{\ominus} \cap(-\operatorname{rec} \overline{\mathrm{ran}} B)^{\ominus}$.
(iv) $v_{R} \in(-\operatorname{rec} \overline{\mathrm{dom}} A) \cap(-\operatorname{rec} \overline{\mathrm{dom}} B)$.
(v) $\left\langle v_{D} \mid v_{R}\right\rangle=0$.
(vi) $v_{D}+v_{R} \in \overline{\operatorname{dom} A-\operatorname{dom} B} \cap \overline{\operatorname{ran} A+\operatorname{ran} B}$.
(vii) $v=v_{D}+v_{R}$.
(viii) $\|v\|^{2}=\left\|v_{D}\right\|^{2}+\left\|v_{R}\right\|^{2}=\left\|\left(v_{R}, v_{D}\right)\right\|^{2}$.

- $v_{D}:=\mathrm{P}_{\overline{\operatorname{dom} A-\operatorname{dom} B}}(0)$. - $v_{R}:=\mathrm{P}_{\overline{\operatorname{ran} A+\operatorname{ran} B}}(0)$.

Dynamic consequences

Known: Let $x \in X$. Then

$$
\mathrm{J}_{A} T^{n} x-\mathrm{J}_{B} \mathrm{R}_{A} T^{n} x=\mathrm{J}_{A^{-1}} T^{n} x+\mathrm{J}_{B^{-1}} \mathrm{R}_{A} T^{n} x=T^{n} x-T^{n+1} x \rightarrow v
$$

Proposition
Let $x \in X$. Then the following hold:
(i) $J_{A} T^{n} x-J_{A} T^{n+1} x \rightarrow v_{R}$.
(ii) $J_{A^{-1}} T^{n} x-J_{A^{-1}} T^{n+1} x \rightarrow v_{D}$.

Proposition (shadow convergence: necessary condition)
Let $x \in X$. Then the following hold:
(i) $\left(\mathrm{J}_{A} T^{n} x\right)_{n \in \mathbb{N}}$ is asymptotically regular $\Leftrightarrow v_{R}=0$.
(ii) $\left(J_{A^{-1}} T^{n} x\right)_{n \in \mathbb{N}}$ is asymptotically regular $\Leftrightarrow v_{D}=0$.

- Id $-T=J_{A}-J_{B} R_{A}=J_{A^{-1}}+J_{B^{-1}} R_{A}$ • $v_{D}:=\mathrm{P}_{\overline{\operatorname{dom} A-\operatorname{dom} B}}(0)$.
$v_{R}:=\mathrm{P}_{\overline{\mathrm{ran} A+\operatorname{ran} B}}(0) . \bullet v=v_{D}+v_{R}$.

Our assumptions: A2

We assume that

$$
v \in \operatorname{ran}(\mathrm{Id}-T)
$$

Equivalently (proof omitted),

$$
Z=\{x \in X \mid 0 \in-v+A x+B(x-v)\} \neq \varnothing .
$$

And finally we see Fejér monotonicity!

Working in $X \times X$ we state the following key result:
Theorem
Suppose that $v \in \operatorname{ran}(\operatorname{ld}-T)$, let $x \in X$, and let $n \in \mathbb{N}$. Then the following hold:
(i) Suppose that A and B are paramonotone (true when
$(A, B)=(\partial f, \partial g))$. Then the sequence

$$
\left((0,-v)+\left(J_{A} T^{n} x+n v_{R}, J_{A^{-1}} T^{n} x+n v_{D}\right)\right)_{n \in \mathbb{N}}
$$

is Fejér monotone with respect to $Z \times K$.
(ii) The sequence $\left(J_{A} T^{n} x+n v_{R}, J_{A^{-1}} T^{n} x+n v_{D}\right)_{n \in \mathbb{N}}$ is bounded.
(iii) The sequence $\left(\mathrm{J}_{A} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded $\Leftrightarrow v_{R}=0$.
(iv) The sequence $\left(J_{A^{-1}} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded $\Leftrightarrow v_{D}=0$.

- $Z:=\operatorname{zer}(-v+A+B(\cdot-v))$. $-K:=\operatorname{zer}\left((-v+A)^{-1}+(B(\cdot-v))^{-\varnothing}\right)$.
- $A^{-\otimes}=(-\mathrm{Id}) \circ A^{-1} \circ(-\mathrm{Id})$.

The optimization setting

From now on we assume that
f and g are proper Isc convex functions on X
and that $(A, B)=(\partial f, \partial g)$. And finally we assume (A3):

$$
v_{R}=0 \quad \Leftrightarrow \quad v=\mathrm{P}_{\overline{\operatorname{ran}}(\mathrm{ld}-T)}(0)=\mathrm{P}_{\overline{\operatorname{dom} f-\operatorname{domg}}}(0)=v_{D} .
$$

We use the abbreviations

$$
\left(P_{f}, P_{f^{*}}, P_{g}, R_{f}\right)=\left(\text { Prox }_{f}, \text { Prox }_{f^{*}}, \operatorname{Prox}_{g}, 2 \operatorname{Prox}_{f}-\mathrm{Id}\right) .
$$

Hence

$$
T=T_{(\partial f, \partial g)}=\mathrm{Id}-P_{f}+P_{g} R_{f} .
$$

[^0]
Convergence proof in a nutshell

- Step 1: refining Z.

Because $v_{R}=0$ we learn that $Z=\{x \in X \mid 0 \in \partial f(x)+\partial g(x-v)\}$. Because $Z \neq \varnothing$ (recalling (A2) $v \in \operatorname{ran}(\mathrm{Id}-T))$ we prove that $Z=\operatorname{argmin}(f+g(\cdot-v))$.

- Step 2: boundedness of the shadows. This is a consequnce of Fejér monotonicity and the assumption $v_{R}=0$.
- Step 3: locating the weak cluster points of the shadows. We show that the weak cluster points are minimizers of $f+g(\cdot-v)$.
- Step 4: full weak convergence of the shadows. We combine Step 2, Step 3 and properties of Fejér monotone sequences.

Step 1: refining Z

Proposition

Recalling that $Z=\{x \in X \mid 0 \in-v+\partial f(x)+\partial g(x-v)\}$, and that $v_{R}=0$ we have:
(i) $Z=\{x \in X \mid 0 \in \partial f(x)+\partial g(x-v)\}$.
(ii) $Z \neq \varnothing \Rightarrow Z=\operatorname{argmin}_{x \in X}(f(x)+g(x-v))$.

- $v_{D}:=\mathrm{P}_{\overline{\mathrm{dom} A-\operatorname{dom} B}}(0) \cdot$ • $v_{R}:=\mathrm{P}_{\overline{\mathrm{ran} A+r a n} B}(0) . \bullet v=v_{D}+v_{R}$.

Step 2: boundedness of the shadows

We proved earlier that: The sequence

$$
\left((0,-v)+\left(J_{A} T^{n} x+n v_{R}, J_{A^{-1}} T^{n} x+n v_{D}\right)\right)_{n \in \mathbb{N}}
$$

is Fejér monotone with respect to $Z \times K$.
Using that $\left(A, B, v_{R}\right)=(\partial f, \partial g, 0)$ we have $\left(J_{A}, J_{A^{-1}}\right)=\left(P_{f}, P_{f^{*}}\right)$ and therefore the sequence

$$
\left((0,-v)+\left(P_{f} T^{n} x, P_{f^{*}} T^{n} x+n v\right)\right)_{n \in \mathbb{N}}
$$

is Fejér monotone with respect to $Z \times K$.

- $v_{D}:=P_{\overline{\operatorname{dom} A-\operatorname{dom} B}}(0) . \bullet v_{R}:=P_{\overline{\operatorname{ran} A+\operatorname{ran} B}}(0) . \bullet v=v_{D}+v_{R} . \bullet$ $Z:=\operatorname{zer}(\partial f+\partial g(\cdot-v)) . \bullet K:=\operatorname{zer}\left((\partial f)^{-1}+(\partial g(\cdot-v))^{-®}\right)$.

Step 3: locating the weak cluster points of the shadows.

Proposition

Set $\mu:=\min _{x \in X}(f(x)+g(x-v))$ and let $x \in X$. Then the following hold:
(i) $\left(P_{f} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded and its weak cluster points are minimizers of $f+g(\cdot-v)$.
(ii) $\left(P_{g} R_{f} T^{n} x\right)_{n \in \mathbb{N}}$ is bounded and its weak cluster points are minimizers of $f(\cdot+v)+g$.
Now let \bar{z} be a weak cluster point of $\left(P_{f} T^{n} x\right)_{n \in \mathbb{N}}$. Then:
(iii) $f\left(P_{f} T^{n} x\right) \rightarrow f(\bar{z})$. (value convergence \checkmark)
(iv) $g\left(P_{g} R_{f} T^{n} x\right) \rightarrow g(\bar{z}-v)$.
(v) $f\left(P_{f} T^{n} x\right)+g\left(P_{g} R_{f} T^{n} x\right) \rightarrow \mu$.

Step 4: full weak convergence of the shadows.

Proposition

Let $x \in X$. Then the following hold:
(i) The sequence $\left(P_{f} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to a minimizer of $f+g(\cdot-v)$.
(ii) The sequence $\left(P_{g} R_{f} T^{n} x\right)_{n \in \mathbb{N}}$ converges weakly to a minimizer of $f(\cdot+v)+g$.

Proof.
(i) We showed that the sequence $\left(P_{f} T^{n} x,-v+P_{f} T^{n} x+n v\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to $Z \times K$. Now let z_{1} and z_{2} be two weak cluster points of $\left(P_{f} T^{n} x\right)_{n \in \mathbb{N}}$. On the one hand,

$$
\left\{z_{1}, z_{2}\right\} \subseteq \underset{x \in X}{\operatorname{argmin}}(f+g(\cdot-v))=Z ; \quad \text { hence, } \quad z_{1}-z_{2} \in Z-Z
$$

On the other hand, $z_{1}-z_{2} \in(Z-Z)^{\perp}$ (proof omitted). Altogether we conclude that $z_{1}-z_{2} \in(Z-Z) \cap(Z-Z)^{\perp}=\{0\}$. Hence, $z_{1}=z_{2} \cdot \checkmark$
(ii) A direct consequence of (i) and earlier result.

How critical are our assumptions?

- (A1)

$$
\overline{\operatorname{ran}}(\mathrm{Id}-T)=\overline{\operatorname{dom} A-\operatorname{dom} B} \cap \overline{\operatorname{ran} A+\operatorname{ran} B}
$$

True, e.g., when X is finite-dimensional and $(A, B)=(\partial f, \partial g)$.
A1 holds in the optimization settings when X is finite-dimensional. . \checkmark

- (A3) $v_{R}=0$. We have proved that it is a necessary and sufficient condition for convergence. \checkmark
- (A2) $v \in \operatorname{ran}(\mathrm{Id}-T)$.

A2 fails and the shadows converge in one step!

- Suppose that $X=\mathbb{R}$.
- Set $(f, g)=\left(\iota_{\{0\}},-\sqrt{\cdot}\right)$.
- Clearly, $\left.\operatorname{dom} \partial f=\operatorname{dom} N_{\{0\}}=\{0\}, \operatorname{dom} \partial g=\right] 0,+\infty[$. Moreover, $\operatorname{ran} \partial f=\mathbb{R}=\operatorname{ran} \partial f+\operatorname{ran} \partial g$.
- Hence, $Z=\varnothing$.
$-\overline{\operatorname{ran}}(\mathrm{Id}-T)=\overline{\operatorname{dom} \partial f-\operatorname{dom} \partial g}=[0,+\infty[$ and $v=0 \notin \operatorname{ran}(\mathrm{ld}-T)$.
- $(\forall n \in \mathbb{N}) P_{f} T^{n} x=P_{\{0\}} T^{n} x=0 . \checkmark$

A2 fails and the shadows are unbounded.

We revisit an example by Ryu-Liu-Yin (2019).

- Suppose that $X=\mathbb{R}^{3}$.
- Let $K=\left\{\left(x_{1}, x_{2}, x_{3}\right)\left|\sqrt{x_{1}^{2}+x_{2}^{2}} \leq\left|x_{3}\right|\right\}\right.$
- Set $(f, g)=\left(\iota_{k},\left\langle e_{1} \mid \cdot\right\rangle+\iota_{\left\{x_{2}=x_{3}\right\}}\right)$.
- Let $x \in \mathbb{R} \times \mathbb{R} \times\{0\}$.
- After filling a lot of details
- $v=0 \notin \operatorname{ran}(\mathrm{Id}-T)$.
- $Z=\varnothing$.
- $\operatorname{argmin}(f+g)=K \cap(\mathbb{R} \cdot(0,1,1)) \neq \varnothing$.
- $(\forall n \in \mathbb{N})\left\|P_{f} T^{n} x_{0}\right\|=\left\|P_{K} T^{n} x\right\| \rightarrow+\infty \cdot \checkmark$

References

R. H.H. Bauschke and W.M. Moursi (2021). On the Douglas-Rachford algorithm for solving possibly inconsistent optimization problems, https://arxiv.org/pdf/2106.11547.pdf

THANK YOU!!

- email: walaa.moursi@uwaterloo.ca

[^0]: $\bullet v_{D}:=\mathrm{P}_{\overline{\operatorname{dom} A-\operatorname{dom} B}}(0) . \bullet v_{R}:=\mathrm{P}_{\overline{\mathrm{ran} A+\mathrm{ran} B}}(0) . \bullet v=v_{D}+v_{R} \cdot \bullet \mathrm{~J}_{\partial f}=P_{f}$. $\mathrm{J}_{(\partial f)^{-1}}=\mathrm{J}_{\partial f^{*}}=P_{f^{*}}$.

