

Reconstructed pCT Images Using Monte Carlo Simulations of a Scintillating Glass Detector

Adam Zieser¹,

Ugur Akgun^{1,2}, Yasar Onel¹

¹University of Iowa, Department of Physics & Astronomy ²Coe College, Physics Department

8th Annual Loma Linda Workshop July 18-20, 2022

Outline

- 1) The scintillating glass calorimeter
 - a) Detector design and previous work
- 2) Beam-oriented pCT reconstruction algorithm
- 3) MCNP simulations
 - a) Reconstructed stopping power images
 - b) Analysis
 - c) Finishing thoughts

Proposal:

- A high-density, radiation hard, fluorescent glass, made with cheap reagents, to be used as the material for a scintillation detector
 - Used for in vivo range verification or pCT
- Conceived by Ugur Akgun research group at Coe College Physics department
 - Physics department specializes in glass physics/MSE
- Compact, 70 alternating layers of 100 glass bars
 - $1 \text{ mm} \times 1 \text{ mm} \times 10 \text{ cm}$ per bar, total: $10 \text{ cm} \times 10 \text{ cm} \times 7 \text{ cm}$
 - Resolves Bragg peak and tracking information

Specifications

Detector must be:

- Compact, attachable to existing proton therapy gantries
 - pCT is limited to particle rates of therapeutic pencil beams
- High-density, capable of completely stopping ~200 MeV protons
 - Densities of 5.84 g/cm³ achieved in $Gd_2O_3 WO_4 B_2O_3$ system originally explored by Taki et al.*
- Made of cheap oxides, easily manufacturable
 - Eu₂O₃-doped glass melts at ~1400 C, standard atmosphere/pressure
 - Glass system also accepts or CeCl₃ or Tb₂O₃

^{*}Taki et al. Coexistence of nano-scale phase separation and microscale surface crystallization in Gd2O3–WO3–B2O3 glasses. *J Non Cryst Solids*, 381:17-22, 2013

Optical properties

- Experiments performed by Tillman et al.* show suitable transmission/emission properties for Eu₂0₃-doped glass
- High-wavelength emission ideal for optically-isolating coating?

^{*}I. J. Tillman et al. High-density scintillating glasses for a proton imaging detector. *Opt. Mater.*, 68:58-62, 2017

Previous work with the glass detector

Backup slide

- In collaboration with D. Wang (formerly Dept. of Radiation Oncology, University of Iowa), preliminary imaging results using hybrid SART/SIRT reconstruction with Geant4 simulations of Shepp-Logan phantom
 - Poor resolution, single-proton algorithm ill-suited to accelerator bunches

Taken from Wilkinson et al.*

*C. J. Wilkinson, L. Ruane, W. Miller, A. Gunsch, and A. Zieser. CARNA - A Compact Glass Proton Imager. In 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pages 1–5. IEEE, 2017.

The problem:

- Previous imaging tests with detector have poor spatial resolution
 - Alternative reconstruction algorithm required to satisfy design constraints
- Example: Varian ProBeam isochron-cyclotron has 72.8 MHz RF, delivers a bunch of ~100 protons every 13.74 ns while operating at 1 nA, with bunch length of 1 – 2 ns*
 - $\sim 10 \text{ ps}$ scintillator dead-time required for individual proton tracking
- Solution: use beam-oriented pCT recon methods to test detector
 - MCNP6 simulations of full pCT scans carried out to validate detector
 - Data used to reconstruct stopping power images
 - Images compared to reference truth values

*Simon Jolly et al. Technical challenges for FLASH proton therapy. *Phys. Med., 78:71-82, 2020*

Beam-oriented pCT Recon

Imaging with the glass detector

Coordinate refresher

- Beamlet parallel-projection geometry used in reconstruction and simulation
 - Rotated Euclidean (t(y, z), s(y, z), x) coordinates
 - Only 2D reconstructions here
- Bragg peak placement in detector yields $\langle E_{out}^{beam} \rangle$

$$\begin{pmatrix} t \\ s \\ x \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y \\ z \\ x \end{pmatrix}$$

Imaging equation

- Proton imaging eq. of D. Wang et al.* modified for use with pencil beams
 - Insensitive to $\frac{S}{\rho}(I(\vec{r}), E_0) \coloneqq \frac{S}{\rho}(I_{H_2O}, E_0)$ across tissues ($I_{H_2O} = 75 \text{ eV used}$)
 - Unknown: mean exit energy $\langle E_{out}^{beam} \rangle_{\mu_t}$, initial energy $\langle E_{in}^{beam} \rangle_{\mu_t}$, mean beam position μ_t , and mean-beam path $\langle \mathcal{L} \rangle_{\mu_t}$

$$G_{\theta}(\mu_{t}, E_{0}) \stackrel{\text{def}}{=} - \int_{\langle E_{\text{in}}^{\text{beam}} \rangle_{\mu_{t}}} \left(\int_{\rho}^{S} \left(I_{\text{H}_{2}\text{O}}, E_{0} \right) / \frac{S}{\rho} \left(I_{\text{H}_{2}\text{O}}, E \right) \right) dE = \int_{\langle \mathcal{L} \rangle_{\mu_{t}}} S(\rho_{e}(\vec{r}), I(\vec{r}), E_{0}) d\ell$$

$$I = 50 - 100 \text{ eV}, E = 150 - 200 \text{ MeV}$$

*Dongxu Wang et al. On the use of a proton path probability map for proton computed tomography reconstruction. *Med Phys*, 37(8):4138-4145, 2010

Modeling the path

Backup slide

- Beam modeling (and FBP_{BEAM} reconstruction algorithm) based on work of Rescigno et al.*
 - Beam is a spreading Gaussian, nuclear halo and aura neglected; not statistically significant enough for imaging
- Beam parameters evolve with moments of empirical differential Molière scattering power T_{H20} (pv(s))
 - Scattering properties of water are assumed everywhere

$$\Phi(\mu_t, t, s) = N(s) \frac{exp\left(=-\frac{1}{2}\frac{(t-\mu_t)^2}{\sigma_t^2(s)}\right)}{\sqrt{2\pi}\sigma_t(s)}$$

$$\sigma_t^2(s) = \sigma_t^2(0) + \frac{1}{2} \int_0^s (s - s')^2 T_{\mathrm{H}_2 0}(pv(s')) ds'$$

*Regina Rescigno et al. A pencil beam approach to proton computed tomography. *Med Phys*, *42(11)*:6610-6624, 2015

Recon pixel contribution

- Each beam ray $G_{\theta}(\mu_i, E_0)$ contributes to projections $g(t, s, E_0)$
 - Each beam Gaussian contributes $w(\mu_i, t, s)$ to a projection
 - Assumptions made for depth-evolution of $w(\mu_i, t, s)$ along s, t
 - $g(t, s, E_0)$ available at all depths s, "virtual radiographs"

$$g(t,s,E_0) = \frac{\sum_{i \in B_\theta} w(\mu_i,t,s) G_\theta(\mu_i,E_0)}{\sum_{i \in B_\theta} w(\mu_i,t,s)}$$
$$w(\mu_i,t,s) = \int_{t-d/2}^{t+d/2} \frac{\Phi(\mu_t,t,s)}{N_0} dt$$

Reconstruction

Distance-driven binning

- Projections g are convoluted with a filter to form filtered projections g
- g is calculated on a grid of points
 - Pixel values found with 2D linear interpolation
- Reconstructed SP is a sum of contributions from all projections

$$S(y, z, E_0) = \frac{\pi}{N_P} \sum_{\theta}^{N_P} g_{\theta}(t(y, z), s(y, z), E_0)$$

MCNP simulations

Simulation parameters, reconstructed images, analysis

Simulated phantom

- Gammex RMI 467 tissue calibration phantom used
- Simulations performed with two phantom configurations: standard and titanium
 - Tests reconstructions with extreme beam hardening

MCNP simulation

Detector not simulated in pCT scans to save processing

- $\langle E_{out}^{beam} \rangle = {}^{E_{total}} / {}_{N_{total}}$ recorded by energy flux and particle surface tally
- Calibration curve formed to relate $s_{\text{Bragg}}(\langle E_{\text{out}}^{\text{beam}} \rangle)$
- 10⁴ histories per ray, beam CCC cell truncated at 2 SD

Images

- Scans carried out for both configurations, with four beam energies (150, 170, 190, 210 MeV), two initial Gaussian beam widths ($\sigma_t(0) = 2.5 \text{ mm}^*$, 1.5 mm)
- Each has 180 projections over 360°, 141 beams per projection
 - Images are141 x 141 pixels
 - Distance-driven binning grid of 141 x 200
- Wider beam width unfeasible

*Alexandra Moignier et al. Toward improved target conformity for two spot scanning proton therapy delivery systems using dynamic collimation, *Med Phys*, 43(3):1421-1427, 2016

Cont.

- Less artifacting, compared to standard FBP
- Extremes of 150 MeV and 210 MeV shown

Error Analysis

- Accuracy of reconstructions compare average of pixels in inserts to reference values, S_{ref}
 - Reference values calculated from manufacturer ρ_e values, and elemental compositions: $S(\rho_e, I(Z))$
 - Contrast calculated to judge visibility against background

$$RE_i = \frac{\bar{S}_i - S_{\text{ref},i}}{S_{\text{ref},i}} \times 100\%$$

Error Images

- Generally low errors for water-like tissues
- Extremely high lung, bone, titanium errors
 - Product of backprojection? Present in FBP images as well

Contrast

- Contrast low for nearly water-equivalent tissues
- FBP_{BEAM} outperforms standard FBP negligibly in glass detector
- "Perfect resolution" images very similar, so shortcomings unrelated to detector resolution

Cont.

The FBP_{BEAM} algorithm outperforms FBP at low densities and energies, but worse at high energy and higher densities

• Comparison via $|RE_i| - |RE_{FBP,i}|$ values

Possible future work

- Improved reconstruction algorithms
 - Current implementation of FBP-style algorithms loosely based on Matlab internal code, may not be optimal?
 - Beam-based algebraic techniques instead?
- More rays per projection for pCT scans may be necessary
 - Bragg peaks statistically significant for rays as sparse as 100 protons; more rays possible without excessive additional dose
 - Limited by precise detection of μ_t , accurate entrance tracking plane required
- Results promising, but need improvement

End

Thank you! Questions?

Adam Zieser, Ugur Akgun, and Yasar Onel. Reconstructed pCT Images Using Monte Carlo Simulations of a Scintillating Glass Detector, 2022. arXiv:2206.09993.

Previous glass detector publications

Extra slide

- G. L. Ademoski et al. A glass neutron detector with machine learning capabilities. J. Instrum., 14(6):P06013–P06013, 2019. doi:10.1088/1748-0221/14/06/p06013.
- Gabriel Varney, Catherine Dema, Burak E. Gul, Collin J. Wilkinson, and Ugur Akgun. Use of machine learning in CARNA proton imager. In *Medical Imaging 2019: Physics* of *Medical Imaging*, volume 10948, pages 1317–1325. SPIE, 2019. doi:10.1117/12.2512565.
- C. J. Wilkinson et al. High-density scintillating glasses for a proton imaging detector. In: Medical Imaging 2017: Physics of Medical Imaging,
- C. J. Wilkinson, L. Ruane, W. Miller, A. Gunsch, and A. Zieser. CARNA A Compact Glass Proton Imager. In 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pages 1–5. IEEE, 2017. doi:10.1109/NSSMIC.2017.8533076.
- I. J. Tillman et al. High-density scintillating glasses for a proton imaging detector. Optical Materials, 68:58–62, 2017. doi:10.1016/j.optmat.2016.10.015.