

TRANSFORMING PROTON THERAPY

First test of pCT in a Gantry System: Results and Challenges

Ethan DeJongh ProtonVDA LLC July 18, 2022

Proton Imaging can help reduce range uncertainties by directly measuring proton stopping power

We aim to:

Develop a proton imaging system based on well-established fast scintillator technology.

- 1. \rightarrow High-performance, low-cost measurements of proton range.
- 2. Achieve lower dose to the patient relative to equivalent x-ray images.
- 3. Produce spatially sharp images.
- 4. Images free of artifacts from high-Z implants.

Multidisciplinary team of detector physicists, medical physicists, computer scientists, and radiation oncologists:

- ProtonVDA: Fritz DeJongh, Ethan DeJongh, Victor Rykalin
- Loyola Stritch School of Medicine: James Welsh
- Northwestern Medicine Chicago Proton Center: Mark Pankuch, Brad Kreydick
- Northern Illinois University, Dept. of Computer Science: Nick Karonis, Cesar Ordonez, John Winans, Kirk Duffin. Dept. of Physics: George Coutrakon, Christina Sarosiek
- Loma Linda University: Reinhard Schulte

Fiber layout cross-section for one tracking plane:

3	30	3	31		C)	1	L	2	2	3	3	
	3	31		0		1	L	2	2	3	3	4	
x = 0							<u></u>	0.1					

- X-Y tracking planes upstream and downstream
- Multiplexed fiber readout
 - 32 digitized channels per tracking plane

- position ambiguities resolved using pencil beam targeting information

- reduces amount of electronics needed

- 40 x 40 x 13 cm block of scintillator for range detector
 - 4 x 4 array of PMTs
 - Output digitized into four channels: E, U, V,C
- Individual protons tracked at up 10 MHz
- > 99% tracking efficiency
- WEPL resolution ~ 3 mm per proton
- 40 x 40 cm image field size
- Fast (<1 min) image reconstruction for radiograph

• Linear detector response vs. range gives very good range sensitivity

Imaging with Multiple Proton Energies – Pediatric Head Phantom

pCT of fresh pig's head

- 4 energies, data taken in 4 degree intervals
- Vertical CT taken for comparison

Proton radiographs taken every 4 degrees

Contours: tympanic bullae

рСТ хСТ

Region	Volume	pCT RSP	Hor CT^a	Diff	Hor CT^b	Diff	Vert CT	Diff
0	(cm^3)	Mean SD $SE(\%)$	RSP	(%)	RSP	(%)	RSP	(%)
Bullae	0.8	$0.491 \ 0.24 \ 1.7$	0.684	-39.3	0.690	-40.5	0.634	-29.1
Adipose	3.7	$0.950 \ 0.14 \ 0.2$	0.961	-1.2	0.962	-1.3	0.954	-0.4
Muscle	2.0	$1.033 \ 0.16 \ 0.3$	1.058	-2.4	1.059	-2.5	1.052	-1.8
Tongue	9.4	$1.047 \ 0.23 \ 0.2$	1.035	1.1	1.036	1.1	1.031	1.5
Brain Stem	0.7	$0.994 \ 0.16 \ 0.6$	1.038	-4.4	1.038	-4.4	1.016	-2.2
Brain	2.5	$1.025 \ 0.16 \ 0.3$	1.037	-1.2	1.039	-1.4	1.031	-0.6
Lens	0.1	$1.099 \ 0.12 \ 1.6$	1.078	1.9	1.080	1.7	1.076	2.1
Eye Left	0.5	$1.015 \ 0.13 \ 0.5$	1.015	0.0	1.017	-0.2	1.018	-0.3
Eye Right	0.8	$1.011 \ 0.15 \ 0.5$	1.021	-1.0	1.021	-1.0	1.014	-0.3
Skull	0.5	$1.266\ 0.12\ 0.4$	1.297	-2.4	1.303	-2.9	1.320	-4.3
Mandible	0.5	$1.540 \ 0.16 \ 0.5$	1.559	-1.2	1.565	-1.6	1.562	-1.4
Sinus Air	0.1	$0.067 \ 0.12 \ 17$	0.057	15	0.058	13	0.039	42

^{*a*} Low dose protocol ^{*b*} High dose protocol

Using pRad to align the patient – see talk by Joe Piet

Using pRad to align the patient – see talk by Joe Piet

Using pRad to align the patient – see talk by Joe Piet

Our Reconstruction Algorithm: the DV method

$$d_{p} = Ax - b$$

$$d_{v} = \bar{A}^{T} d_{p}$$

$$\bar{A}^{T} = V^{-1} A^{T}$$

$$V^{-1} = diag\left(\frac{1}{\sum_{j} \alpha_{ij}^{T}}\right)$$

 $x_{k+1} = x_k - \lambda_k d_{vk}$

10

5

0

-5

-10

Optimization of λ_k

$$d_{pk} = Ax_{k} - b$$

$$d_{vk} = \bar{A}^{T}d_{pk}$$

$$x_{k+1} = x_{k} - \lambda_{k} d_{vk}$$

$$d_{p(k+1)} = Ax_{k+1} - b$$

$$= d_{pk} - \lambda_{k} Ad_{vk}$$

$$d_{v(k+1)} = \bar{A}^{T} d_{p(k+1)}$$
$$= d_{vk} - \frac{\lambda_{k}}{\lambda_{k}} \bar{A}^{T} (A d_{vk})$$

• One possible choice for λ_k : Minimize χ^2_{k+1} $\chi^{2}_{k+1} = d_{p(k+1)} \cdot d_{p(k+1)}$ $= d_{pk} \cdot d_{pk} - 2\lambda_k d_{pk} \cdot (Ad_{vk}) + \lambda_k^2 / Ad_{vk}/^2$ $= \chi_k^2 - 2\lambda_k d_{\nu k} \cdot (Ad_{\nu k}) + \lambda_k^2 |Ad_{\nu k}|^2$ $d\chi_{k+1}^2/d\lambda_k = -2 d_{pk} \cdot (Ad_{vk}) + 2\lambda_k /Ad_{vk}/^2 = 0$ $\lambda_k = d_{pk} \cdot (Ad_{vk}) / |Ad_{vk}|^2$ • Another choice for λ_k : Minimize $d_{v(k+1)} \cdot d_{v(k+1)}$ $\lambda_{k} = d_{vk} \cdot (\bar{A}^{T}Ad_{vk}) / |\bar{A}^{T}Ad_{vk}|^{2}$

Stopping Criteria

Fixed beam and imaging system, rotating patient

Fixed patient, rotating beam and imaging system

Mounting system designed and built by Cosylab

First ever pCT test in a gantry system! June 25, 2022

We acquired proton imaging data from 45 angles for a pediatric head phantom using 3 proton energies – 120, 162, and 198 MeV.

The test took over 6 hours to complete.

Issues affecting image reconstruction:

- Separate rotational axes for imaging system and gantry
- Shifting of detector geometry vs. angle
- Sagging of gantry vs. angle
- Change in PMT gains vs. angle
- Beam steering not well calibrated at low intensity

Angle 240

Plot of proton count vs beam spot for 120 MeV

- Each pixel represents a 5x5 mm area

- Apparent movement of head indicates scan pattern shifts up to 2 cm

- This did not occur for 198 MeV scan

Angle 280

Plot of proton count vs beam spot for 120 MeV

- Each pixel represents a 5x5 mm area

- Apparent movement of head indicates scan pattern shifts up to 2 cm

- This did not occur for 198 MeV scan

Angle 320

Plot of proton count vs beam spot for 120 MeV

- Each pixel represents a 5x5 mm area

- Apparent movement of head indicates scan pattern shifts up to 2 cm

- This did not occur for 198 MeV scan

Detector Response vs. Fiber Position for 45 gantry angles

- 162 MeV protons

Mapping fiber positions to beam coordinates using the average fiber index of each beam spot

Ymu:xt {yt==10 && Ymu>0}

Y Fiber Positions for one row of spots

- beam scanning up and down

- oscillating pattern shows the beam stopping at different heights depending on whether it is moving up or down yu:xu {Ymu>530 && Ymu<545 && xu>-99 && yu>-99}

X-Y location of each fiber index combination, in beam coordinates

Ymu:xt {yt==10 && Ymu>0}

Smoothing algorithm applied to beam spot positions

yu:xu {Ymu>530 && Ymu<545 && xu>-99 && yu>-99}

Affect of smoothing of fiber positions

V(cm)

yt:Xmu {xt==10 && Xmu>0}

X Fiber positions for one column of beam spots yt:Xmu {xt==10 && Xmu>0}

yu:xu {Xmu>530 && Xmu<545 && xu>-99 && yu>-99}

Vertical fiber positions (cm)

yu:xu {Xmu>530 && Xmu<545 && xu>-99 && yu>-99}

1 cm pCT slices – unsmoothed fibers

WET (cm

*Data taken from November 2021 fixed-beam room pCT scan

1 mm pCT slices – smoothed fibers

*Data taken from November 2021 fixed-beam room pCT scan

pRad Movie: 45 gantry angles

*Using separate beam-based position calibration at each angle

Sum of WEPL from all angles

WEPL (cm)

*Line of symmetry determines horizontal position of rotational axis to within 0.1 mm

1 mm pCT slices from gantry data

Vertical – from front of head

Fixed beam room – 180 angles

More tools to improve the image:

- Use of optical tracking markers to detect movement of trackers vs. patient
- 6D tracker alignment using beam spots
 see talk by Kirk Duffin
- Apply angle-dependent position corrections to account for gantry sagging
- Angle-dependent range detector calibration

TRANSFORMING PROTON THERAPY

Conclusions:

Overall, a successful first test

We have demonstrated that pCT in a gantry system is challenging, but feasible.

Fixed-beam pCT is simpler due to:

- Single rotational axis
- Single detector alignment
- Single WEPL calibration

More work is needed to utilize all information in the image reconstruction.

