ProtonVDA

TRANSFORMING PROTON THERAPY
First test of pCT in a Gantry System: Results and Challenges

Ethan DeJongh ProtonVDA LLC July 18, 2022

Proton Imaging can help reduce range uncertainties by directly measuring proton stopping power

We aim to:

Develop a proton imaging system based on well-established fast scintillator technology.

1. \rightarrow High-performance, low-cost measurements of proton range.
2. Achieve lower dose to the patient relative to equivalent x-ray images.
3. Produce spatially sharp images.
4. Images free of artifacts from high-Z implants.

Multidisciplinary team of detector physicists, medical physicists, computer scientists, and radiation oncologists:

- ProtonVDA: Fritz DeJongh, Ethan DeJongh, Victor Rykalin
- Loyola Stritch School of Medicine: James Welsh
- Northwestern Medicine Chicago Proton Center: Mark Pankuch, Brad Kreydick
- Northern Illinois University, Dept. of Computer Science: Nick Karonis, Cesar Ordonez, John Winans, Kirk Duffin. Dept. of Physics: George Coutrakon, Christina Sarosiek
- Loma Linda University: Reinhard Schulte

Fiber layout cross-section for one tracking plane:

- X-Y tracking planes upstream and downstream
- Multiplexed fiber readout
- 32 digitized channels per tracking plane
- position ambiguities resolved using pencil beam targeting information
- reduces amount of electronics needed
- $40 \times 40 \times 13 \mathrm{~cm}$ block of scintillator for range detector
-4×4 array of PMTs
- Output digitized into four channels: E, U, V,C
- Individual protons tracked at up 10 MHz
- > 99\% tracking efficiency
- WEPL resolution $\sim 3 \mathrm{~mm}$ per proton
- $40 \times 40 \mathrm{~cm}$ image field size
- Fast (<1 min) image reconstruction for radiograph

- Linear detector response vs. range gives very good range sensitivity

Uniform Scan of 6.1 cm Water Block with 128 MeV Protons
WEPL (cm)

Individual Proton WEPL

Pixel Average

Imaging with Multiple Proton Energies - Pediatric Head Phantom

120 MeV

160 MeV

pCT of fresh pig's head

- 4 energies, data taken in 4 degree intervals
- Vertical CT taken for comparison

Proton radiographs taken every 4 degrees

Horizontal pCT slices - 1 mm

Contours: tympanic bullae

Region	Volume $\left(\mathrm{cm}^{3}\right)$	$\begin{gathered} \text { pCT RSP } \\ \text { Mean SD SE(\%) } \end{gathered}$	Hor CT^{a} RSP	$\begin{aligned} & \text { Diff } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Hor CT }{ }^{b} \\ & \text { RSP } \end{aligned}$	$\begin{aligned} & \text { Diff } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { Vert CT } \\ & \text { RSP } \end{aligned}$	$\begin{aligned} & \text { Diff } \\ & (\%) \end{aligned}$
Bullae	0.8	0.4910 .241 .7	0.684	-39.3	0.690	-40.5	0.634	-29.1
Adipose	3.7	0.9500 .140 .2	0.961	-1.2	0.962	-1.3	0.954	-0.4
Muscle	2.0	1.0330 .160 .3	1.058	-2.4	1.059	-2.5	1.052	-1.8
Tongue	9.4	1.0470 .230 .2	1.035	1.1	1.036	1.1	1.031	1.5
Brain Stem	0.7	0.9940 .160 .6	1.038	-4.4	1.038	-4.4	1.016	-2.2
Brain	2.5	1.0250 .160 .3	1.037	-1.2	1.039	-1.4	1.031	-0.6
Lens	0.1	1.0990 .121 .6	1.078	1.9	1.080	1.7	1.076	2.1
Eye Left	0.5	1.0150 .130 .5	1.015	0.0	1.017	-0.2	1.018	-0.3
Eye Right	0.8	1.0110 .150 .5	1.021	-1.0	1.021	-1.0	1.014	-0.3
Skull	0.5	1.2660 .120 .4	1.297	-2.4	1.303	-2.9	1.320	-4.3
Mandible	0.5	1.5400 .160 .5	1.559	-1.2	1.565	-1.6	1.562	-1.4
Sinus Air	0.1	$0.067 \quad 0.1217$	0.057	15	0.058	13	0.039	42

${ }^{a}$ Low dose protocol
${ }^{b}$ High dose protocol

WET (cm)

X-Ray CT DRR converted to WET
pCT DRR

Difference - pRad vs. xCT

Difference - pRad vs. pCT

Using pRad to align the patient - see talk by Joe Piet

X-Ray DRR - registered alignment

Difference - pRad vs DRR
RSP change

Using pRad to align the patient - see talk by Joe Piet

X-Ray DRR - 1 mm misalignment

Difference - pRad vs DRR
RSP change

Using pRad to align the patient - see talk by Joe Piet

X-Ray DRR - 2 mm misalignment
WEPL (cm)

Difference - pRad vs DRR
RSP change

Our Reconstruction
Algorithm: the DV method

$$
\begin{aligned}
& d_{p}=A x-b \\
& d_{v}=\bar{A}^{T} d_{p} \\
& \bar{A}^{T}=V^{-1} A^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Optimization of } \lambda_{k} \\
& d_{p k}=A x_{k}-b \\
& d_{v k}=\bar{A}^{\top} d_{p k} \\
& x_{k+1}=x_{k}-\lambda_{k} d_{v k} \\
& d_{p(k+1)}=A x_{k+1}-b \\
& =d_{p k}-\lambda_{k} A d_{v k} \\
& d_{v(k+1)}=\bar{A}^{\top} d_{p(k+1)} \\
& =d_{v k}-\lambda_{k} \bar{A}^{\top}\left(A d_{v k}\right)
\end{aligned}
$$

- One possible choice for λ_{k} : Minimize $\chi^{2}{ }_{k+1}$

$$
\begin{aligned}
\begin{aligned}
\chi_{k+1}^{2} & =d_{p(k+1)} \cdot d_{p(k+1)} \\
& =d_{p k} \cdot d_{p k}-2 \lambda_{k} d_{p k} \cdot\left(A d_{v k}\right)+\lambda^{2}{ }_{k}\left|A d_{v k}\right|^{2} \\
& =\chi^{2}{ }_{k}-2 \lambda_{k} d_{p k} \cdot\left(A d_{v k}\right)+\lambda^{2}{ }_{k}\left|A d_{v k} /\right|^{2}
\end{aligned} \\
\begin{aligned}
\mathrm{d} \chi^{2}{ }_{k+1} & / \mathrm{d} \lambda_{k}=-2 d_{p k} \cdot\left(A d_{v k}\right)+2 \lambda_{k}\left|A d_{v k}\right|^{2}=0 \\
\lambda_{k}= & d_{p k} \cdot\left(A d_{v k}\right) /\left|A d_{v k}\right|^{2}
\end{aligned}
\end{aligned}
$$

- Another choice for λ_{k} : Minimize $d_{v(k+1)} \cdot d_{v(k+1)}$

$$
\lambda_{k}=d_{v k} \cdot\left(\bar{A}^{\top} A d_{v k}\right) /\left|\bar{A}^{\top} A d_{v k}\right|^{2}
$$

Stopping Criteria

Estimated RSP uncertainty per voxel:

$$
\sigma_{v}=\frac{\sigma_{p}}{\bar{\alpha} \sqrt{N_{p v}}}
$$

*See talk by Alexander Pryanichnikov

Fixed beam and imaging system, rotating patient

Fixed patient, rotating beam and imaging system

Mounting system designed and built by Cosylab

First ever pCT test in a gantry system! June 25, 2022

We acquired proton imaging data from 45 angles for a pediatric head phantom using 3 proton energies - 120, 162, and 198 MeV .

The test took over 6 hours to complete.

Issues affecting image reconstruction:

- Separate rotational axes for imaging system and gantry
- Shifting of detector geometry vs. angle
- Sagging of gantry vs. angle
- Change in PMT gains vs. angle
- Beam steering not well calibrated at low intensity

Angle 240
Plot of proton count vs beam spot for 120 MeV

- Each pixel represents a $5 \times 5 \mathrm{~mm}$ area
- Apparent movement of head indicates scan pattern shifts up to 2 cm
- This did not occur for 198 MeV scan

Spot number Y

Angle 280
Plot of proton count vs beam spot for 120 MeV

- Each pixel represents a $5 \times 5 \mathrm{~mm}$ area
- Apparent movement of head indicates scan pattern shifts up to 2 cm
- This did not occur for 198 MeV scan

Spot number Y

Spot number X

Angle 320
Plot of proton count vs beam spot for 120 MeV

- Each pixel represents a $5 \times 5 \mathrm{~mm}$ area
- Apparent movement of head indicates scan pattern shifts up to 2 cm
- This did not occur for 198 MeV scan

Spot number Y

Detector Response vs. Fiber Position for 45 gantry angles

- 162 MeV protons

Mapping fiber positions to beam coordinates using the average fiber index of each beam spot

Horizontal fibers

Vertical fibers

Ymu:xt $\{y t==10 \& \& Y m u>0\}$

> X-Y location of each fiber index combination, in beam coordinates

Ymu:xt $\{y t==10 \& \& Y m u>0\}$

Smoothing algorithm applied to beam spot positions

yt:Xmu $\{x t==10 \& \& X m u>0\}$

X Fiber positions for one column of beam spots
yt:Xmu $\{x t==10 \& \& X m u>0\}$

yu:xu \{Xmu>530 \&\& Xmu<545 \&\& xu>-99 \&\& yu>-99\}

Vertical fiber positions (cm)
yu:xu \{Xmu>530 \&\& Xmu<545 \&\& xu>-99 \&\& yu>-99\}

Vertical fiber positions (cm)

1 cm pCT slices - unsmoothed fibers
WET (cm

1 mm pCT slices - smoothed fibers

pRad Movie: 45 gantry angles

Sum of WEPL from all angles
WEPL (cm)
WEPL (cm)

*Using separate beam-based position calibration at each angle

1 mm pCT slices from gantry data

Vertical - from front of head
Vertical - from side of head
Horizontal

Gantry room data - 45 angles

Fixed beam room - 180 angles

Gantry room data - 45 angles

Fixed beam room - 180 angles

Gantry room data - 45 angles

Fixed beam room - 180 angles

More tools to improve the image:

- Use of optical tracking markers to detect movement of trackers vs. patient
- 6D tracker alignment using beam spots - see talk by Kirk Duffin
- Apply angle-dependent position corrections to account for gantry sagging
- Angle-dependent range detector calibration

ProtonVDA

TRANSFORMING PROTON THERAPY

Conclusions:

Overall, a successful first test
We have demonstrated that PCT in a gantry system is challenging, but feasible.

Fixed-beam pCT is simpler due to:

- Single rotational axis
- Single detector alignment
- Single WEPL calibration

More work is needed to utilize all information in the image reconstruction.

