

Finite Element Analysis of Customized Alternating Electric Field (AEF) Transducers for Small Animal Applications

Ha Nguyen

PI: Dr. Keith Schubert

The 8th Annual Loma Linda Workshop

07/18-20/2022

Overview

- Introduction
- Literature Review
- Methodology
- Results and Discussion
- Conclusion

Introduction

- Glioblastoma (GBM)
 - High mortality and morbidity

Introduction

- Glioblastoma (GBM)
 - High mortality and morbidity
 - Standard treatment
 - Surgery
 - Radiation
 - Chemotherapy
- Alternating electric field (AEF) therapy

Alternating Electric Fields (AEF) Therapy

- Alternating electric fields
 - o 100-300 kHz
 - 1-3 V/cm

Alternating Electric Fields (AEF) Therapy

- Alternating electric fields
 - 100-300 kHz
 - 1-3 V/cm
- FDA-approval
 - EF-11 trial
 - 2011 for recurrent GBM
 - EF-14 trial
 - 2015 for newly diagnosed GBM

Motivation

- Limited of in vivo studies
 - Incomplete knowledge of AEFs

inovitro[™] Lab Research System |

Motivation

- Limited of in vivo studies
 - Incomplete knowledge of AEFs
- Ultimate goal
 - A systematic AEF platform for small animal applications
- Computational work
 - Customized AEF transducers
 - Titanium screws and metal caps

Overview

- Introduction
- Literature Review
- Methodology
- Results and Discussion
- Conclusion

Fundamental Principles of AEFs

- Electric field
 - Intermediate frequency
 - 100-500 kHz
 - Kirson and Palti
 - 1.5 V/cm at 200 kHz

Constant, uniform electric field

Alternating electric fields

Biological Effects of AEFs

Mitosis

Biological Effects of AEFs

Clinical AEF Apparatus

- ➤ Optune[™] System
 - Novocure Ltd.

Clinical AEF Apparatus

- ➤ Optune[™] System
 - Electrode (i.e. PMN-PT, $\varepsilon_r = 5000$)

Overview

- Introduction
- Literature Review
- Methodology
- Results and Discussion
- Conclusion

Computational Simulations

- Ansys Electronics
- Simulation models
 - A simplified rat head model with a tumor and AEF electrodes
 - Three AEF electrode models

- Simplified rat head model
 - 17.4 mm H x 30 mm D
 - 4 layers
 - Human glioblastoma

0 10 20 (mm)

- Three AEF electrode models
 - Model 1 Baseline transducers
 - Model 2 Baseline transducers mounted to titanium screws
 - Model 3 Customized transducers

- ➤ Model 1
 - "Baseline" transducers
 - 10 mm diameter
 - Copper plate
 - Ceramic
 - Hydrogel

- Model 2
 - Baseline transducers
 - Titanium (Ti) screws
 - OsteoMed, TX

- ➤ Model 3
 - Customized transducers
 - Ti screws
 - Metal caps
 - Aluminum

20 (mm)

Testing Parameters

- Three simulation models
 - Model 1 Baseline transducers
 - Model 2 Baseline transducers mounted to titanium screws
 - Model 3 Customized transducers
- Ansys Electronics
 - HFSS
 - 42 V at 200 kHz
 - Icepak
 - Room temperature at 24°C
 - No physiological processes (blood flow and metabolic heat)

Overview

- Introduction
- Literature Review
- Methodology
- Results and Discussion
- Conclusion

Model 1 - Baseline AEF Transducers (no Ti screws, no metal caps)

Model 2 - Baseline AEF Transducers mounted to Ti screws (no metal caps)

Model 3 - Customized AEF Transducers (Ti screws and metal caps)

Table 2. Mean AEF strength (V/cm) in the brain (WM), tumor shell, and tumor core

		Mean AEF strength (V/cm)		
Model	Simulation Description	Brain (WM)	Tumor shell	Tumor core
1	Baseline AEF transducers	1.2	1.8	1.1
2	Baseline AEF transducers	1.2	1.9	1.1
	mounted to titanium screws			
3	Customized AEF transducers	1.5	2.4	1.4

➤ Tumor shell: ~26% improvement in mean field strength

Table 2. Mean AEF strength (V/cm) in the brain (WM), tumor shell, and tumor core

		Mean AEF strength (V/cm)		
Model	Simulation Description	Brain (WM)	Tumor shell	Tumor core
1	Baseline AEF transducers	1.2	1.8	1.1
2	Baseline AEF transducers	1.2	1.9	1.1
	mounted to titanium screws			
3	Customized AEF transducers	1.5	2.4	1.4

> Tumor shell: ~26% improvement in mean field strength

Table 3. Other measurements

Model	Simulation Description	Thermal load (°C)	Power (W)
		on scalp	across the electrodes
1	Baseline AEF transducers	9.1	0.2
2	Baseline AEF transducers	9.5	0.2
	mounted to titanium screws		
3	Customized AEF transducers	6.3	0.3

Scalp: ~30% reduction in thermal load

Overview

- Introduction
- Literature Review
- Methodology
- ☐ Results and Discussion
- Conclusion

Summary

- Computational work
 - Mean AEF strength >2 V/cm in the active shell
 - Thermal load reduction of 30% on the scalp

Future Research

- Verify the performance of the proposed AEF device in tissue-mimicking phantoms
- MCU-based AEF device
 - Animal testings

Acknowledgment

I would like to thank our collaborators: Dr. Reinhard Schulte from Loma Linda University; Dr. Chirag Patel from MD Anderson; Dr. Christoph Pohling, Dr. Ying Nie, and Dr. Vladimir Bashkirov from Loma Linda University; Dr. Edwin Chang from Stanford University; Dr. Yuping Zeng from University of Delaware; and Dr. Vicky Yamoto from University of Southern California.

I would like to thank Ansys for their generous support

References

- [1] https://www.mayoclinic.org/diseases-conditions/glioma/multimedia/glioma/img-20129420
- [2] https://www.novocure.com/our-therapy/
- [3] Y. Porat *et al.*, "Determining the Optimal Inhibitory Frequency for Cancerous Cells Using Tumor Treating Fields (TTFields)," *JoVE (Journal of Visualized Experiments)*, no. 123, p. e55820, May 2017, doi: 10.3791/55820.
- [4] M. Saria and S. Kesari, "Efficacy and Safety of Treating Glioblastoma With Tumor-Treating Fields Therapy.," *Clinical journal of oncology nursing*, 2016, doi: 10.1188/16.CJON.S1.9-13.
- [5] F. A. Carrieri, C. Smack, I. Siddiqui, L. R. Kleinberg, and P. T. Tran, "Tumor Treating Fields: At the Crossroads Between Physics and Biology for Cancer Treatment," *Front Oncol*, vol. 10, p. 575992, Oct. 2020, doi: <u>10.3389/fonc.2020.575992</u>.
- [6] O. Rominiyi, A. Vanderlinden, S. J. Clenton, C. Bridgewater, Y. Al-Tamimi, and S. J. Collis, "Tumour treating fields therapy for glioblastoma: current advances and future directions," *Br J Cancer*, vol. 124, no. 4, pp. 697–709, Feb. 2021, doi: 10.1038/s41416-020-01136-5.
- [7] A. A. Rehman, K. B. Elmore, and T. A. Mattei, "The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes," *Neurosurgical Focus*, vol. 38, no. 3, p. E14, Mar. 2015, doi: 10.3171/2015.1.FOCUS14742.

Thank you!

Contact Info:

ha_nguyen3@baylor.edu