Correcting Detector Plane Misalignment with Projective Geometry
 8th Annual Loma Linda Algorithm Workshop

Kirk Duffin, Nicholas Karonis, Caesar Ordoñez, John Winans, Fritz DeJongh, Ethan DeJongh

Northern Illinois
University

19 July 2022

University

Projective Geometry - History

 University
Projective Geometry - History

- 3rd century - Pappus

Projective Geometry - History

- 3rd century - Pappus
- 15th century - geometry of perspective

Projective Geometry - History

- 3rd century - Pappus
- 15th century - geometry of perspective
- 16th century - Desargues and Kepler - point at infinity, drawing using vanishing points University

Projective Geometry - History

- 3rd century - Pappus
- 15th century - geometry of perspective
- 16th century - Desargues and Kepler - point at infinity, drawing using vanishing points
- ...
- 19th century - organize geometry - Felix Klein - Erlangen program

Projective Geometry

- Projective Plane (2D) - Geometric plane plus line at infinity

Properties

Projective Geometry

- Projective Plane (2D) - Geometric plane plus line at infinity
- Projective Transformations (Homographies) - invariants, straight lines to straight lines, preserving incidence structures
Properties

Projective Geometry

- Projective Plane (2D) - Geometric plane plus line at infinity
- Projective Transformations (Homographies) - invariants, straight lines to straight lines, preserving incidence structures
Properties
- 2 lines always intersect, parallel lines intersect at infinity

Projective Geometry

- Projective Plane (2D) - Geometric plane plus line at infinity
- Projective Transformations (Homographies) - invariants, straight lines to straight lines, preserving incidence structures
Properties
- 2 lines always intersect, parallel lines intersect at infinity
- parallel lines not preserved

Projective Geometry

- Projective Plane (2D) - Geometric plane plus line at infinity
- Projective Transformations (Homographies) - invariants, straight lines to straight lines, preserving incidence structures
Properties
- 2 lines always intersect, parallel lines intersect at infinity
- parallel lines not preserved

- distance not preserved

Projective Geometry

- Projective Plane (2D) - Geometric plane plus line at infinity
- Projective Transformations (Homographies) - invariants, straight lines to straight lines, preserving incidence structures
Properties
- 2 lines always intersect, parallel lines intersect at infinity
- parallel lines not preserved

- distance not preserved
- angles not preserved

Projective Geometry

- Projective Plane (2D) - Geometric plane plus line at infinity
- Projective Transformations (Homographies) - invariants, straight lines to straight lines, preserving incidence structures
Properties
- 2 lines always intersect, parallel lines intersect at infinity
- parallel lines not preserved

- distance not preserved
- angles not preserved
- no circles, but conic(s)

Projective Transformations

In n dimensions there exists a projective transformation to take any arbitrary (non-collinear) $(n+2)$ points (projective frame) to any other arbitrary projective frame.

Homogeneous Coordinates

- n dimensional point represented by $n+1$ coordinate values. 2D - $\left[\begin{array}{lll}x & y & w\end{array}\right]$.

Homogeneous Coordinates

- n dimensional point represented by $n+1$ coordinate values. $2 \mathrm{D}-\left[\begin{array}{lll}x & y & w\end{array}\right]$.
- unique up to a scale factor (all zeros not allowed)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
6 & 4 & 2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0.3 & 0.2 & 0.2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
{[30} & 20 & 10
\end{array}\right]}
\end{aligned}
$$

all represent the same point

Homogeneous Coordinates

- n dimensional point represented by $n+1$ coordinate values. $2 \mathrm{D}-\left[\begin{array}{lll}x & y & w\end{array}\right]$.
- unique up to a scale factor (all zeros not allowed)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
6 & 4 & 2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0.3 & 0.2 & 0.2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
{[30} & 20 & 10
\end{array}\right]}
\end{aligned}
$$

all represent the same point

- Point at infinity has $w=0$.

Homogeneous Coordinates

- n dimensional point represented by $n+1$ coordinate values. $2 \mathrm{D}-\left[\begin{array}{lll}x & y & w\end{array}\right]$.
- unique up to a scale factor (all zeros not allowed)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
6 & 4 & 2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0.3 & 0.2 & 0.2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
{[30} & 20 & 10
\end{array}\right]}
\end{aligned}
$$

all represent the same point

- Cartesian to homogenous conversion

$$
(x, y) \Rightarrow\left[\begin{array}{lll}
x & y & 1
\end{array}\right]
$$

Homogeneous Coordinates

- n dimensional point represented by $n+1$ coordinate values. $2 \mathrm{D}-\left[\begin{array}{lll}x & y & w\end{array}\right]$.
- unique up to a scale factor (all zeros not allowed)

$$
\left.\left.\begin{array}{l}
{[3} \\
3
\end{array}\right) 1\right]\left[\begin{array}{ll}
{[6} & 4
\end{array} 2\right]\left[\begin{array}{ll}
{[0.3} & 0.2 \\
{[30} & 20
\end{array} 10\right]\left[\begin{array}{l}
10
\end{array}\right]
$$

all represent the same point

- Cartesian to homogenous conversion

$$
(x, y) \Rightarrow\left[\begin{array}{lll}
x & y & 1
\end{array}\right]
$$

- Homogeneous to cartesian conversion (normalization)

$$
\left[\begin{array}{lll}
x & y & w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

- Point at infinity has $w=0$.

Projective Transformations

- In n dimensions, $(n+1) \times(n+1)$ linear transformation matrix

Projective Transformations

- In n dimensions, $(n+1) \times(n+1)$ linear transformation matrix
- Unique up to a scale factor

Projective Transformations

- In n dimensions, $(n+1) \times(n+1)$ linear transformation matrix
- Unique up to a scale factor
- Includes standard affine transformations - translation, scale, rotation. Adds perspective transformations.

Projective Transformations

- In n dimensions, $(n+1) \times(n+1)$ linear transformation matrix
- Unique up to a scale factor
- Includes standard affine transformations - translation, scale, rotation. Adds perspective transformations.
- Transformation composition through matrix multiplication

Projective Transformations

pCT

Assumptions:
pCT

Assumptions:

- Detector planes perpendicular to beam axis
pCT

Assumptions:

- Detector planes perpendicular to beam axis
- Distance of detector planes from isocenter
pCT

Assumptions:

- Detector planes perpendicular to beam axis
- Distance of detector planes from isocenter
- Alignment of detector plane axes with beam transverse axes
pCT

Assumptions:

- Detector planes perpendicular to beam axis
- Distance of detector planes from isocenter
- Alignment of detector plane axes with beam transverse axes
- Distance of detector planes from beam vergence point
pCT

Assumptions:

- Detector planes perpendicular to beam axis
- Distance of detector planes from isocenter
- Alignment of detector plane axes with beam transverse axes
- Distance of detector planes from beam vergence point
- Detector construction

University

Error Correction

Error Correction

- Most errors listed can be described as errors in position and orientation

Error Correction

- Most errors listed can be described as errors in position and orientation
- Obvious approach for error correction is to measure and model each type of error in terms of translations, orientations, differences from optimal, create adjustments to measured data to counter error.

Error Correction

- Most errors listed can be described as errors in position and orientation
- Obvious approach for error correction is to measure and model each type of error in terms of translations, orientations, differences from optimal, create adjustments to measured data to counter error.
- Idea 1: Combine these affine corrections and perspective projection into single projective transformation matrix.

Error Correction

- Most errors listed can be described as errors in position and orientation
- Obvious approach for error correction is to measure and model each type of error in terms of translations, orientations, differences from optimal, create adjustments to measured data to counter error.
- Idea 1: Combine these affine corrections and perspective projection into single projective transformation matrix.
- Idea 2: Go to 2D

Error Correction

- Most errors listed can be described as errors in position and orientation
- Obvious approach for error correction is to measure and model each type of error in terms of translations, orientations, differences from optimal, create adjustments to measured data to counter error.
- Idea 1: Combine these affine corrections and perspective projection into single projective transformation matrix.
- Idea 2: Go to 2D
- Idea 3: Directly determine final transformation matrix

2D transformation suffices

Solving for the matrix

Goal: Find 2D (3x3) projective transformation matrix M that will transform a measured point p_{m} on a detector into the coordinates of a point p_{i} on the ideal detector plane.

$$
p_{i}=M p_{m},\left(\begin{array}{c}
x_{i} \\
y_{i} \\
w_{i}
\end{array}\right)=\left(\begin{array}{lll}
m_{00} & m_{01} & m_{02} \\
m_{10} & m_{11} & m_{12} \\
m_{20} & m_{21} & 1
\end{array}\right)\left(\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right)
$$

m_{22} set to 1 .
8 remaining parameters to find. University

Ideal and Measured Points

- Spot mean position

Ideal and Measured Points

- Spot mean position
- Accelerator plan spot position on isocenter plane projected to ideal detector plane

Ideal and Measured Points

- Spot mean position
- Accelerator plan spot position on isocenter plane projected to ideal detector plane
- Mean of measured hits of spot as measured point University

Solving for M

- Only 4 point pairs needed in theory.

Solving for M

- Only 4 point pairs needed in theory.
- Direct solution.

Solving for M

- Only 4 point pairs needed in theory.
- Direct solution.
- Points well spread. Spot separation and domain coverage.

Solving for M

- Only 4 point pairs needed in theory.
- Direct solution.
- Points well spread. Spot separation and domain coverage.
- Sensitive to noise.

Solving for M

- Only 4 point pairs needed in theory.
- Direct solution.
- Points well spread. Spot separation and domain coverage.
- Sensitive to noise.
- Go to overdetermined system University

Solving for M

Solve using non-linear optimization (modified
Levenberg-Marquardt).
Given k measured points p_{m} and their corresponding ideal representations $\left(p_{m}, p_{i}\right)$ point pairs, create $2 k$ expressions to minimize,

$$
\begin{aligned}
& \frac{x\left(M p_{m_{j}}\right)}{w\left(M p_{m_{j}}\right)}-x_{i_{j}} \\
& \frac{y\left(M p_{m_{j}}\right)}{w\left(M p_{m_{j}}\right)}-y_{i_{j}}
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{m_{00} x_{m_{j}}+m_{01} y_{m_{j}}+m_{02}}{m_{20} x_{m_{j}}+m_{21} y_{m_{j}}+1} \\
& \frac{m_{10} x_{m_{j}}+m_{11} y_{m_{j}}+m_{12}}{m_{20} x_{m_{j}}+m_{21} y_{m_{j}}+1}
\end{aligned}
$$

Upstream detector - base case

Upstream Measured Points vs Ideal Points

UPSTREAM DETECTOR — BASE CASE

Upstream detector - base case

Figure: Uncorrected

Upstream detector - base case

Figure: Corrected

Upstream detector - 6mm transverse translation

Upstream Measured Points vs Ideal Points
 University

Upstream detector - 6mm transverse translation

Upstream detector - 6mm transverse translation

Upstream Measured Points vs Ideal Points
15

Upstream detector - 6mm transverse translation

Figure: Uncorrected

Upstream detector - 6mm transverse translation

Figure: Corrected

Upstream detector - 6mm transverse translation

Figure: Baseline

UPSTREAM DETECTOR - 4° AXIAL ROTATION

Upstream Measured Points vs Ideal Points

Computed:
$\left(\begin{array}{rrl}0.997589 & 0.069128 & 0.003283 \\ -0.069904 & 0.997270 & 0.003206 \\ 0.000050 & 0.000030 & 1.0\end{array}\right)$ University

Upstream detector - 4° axial rotation

Ideal:
$\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0.0 \\ \sin \theta & \cos \theta & 0.0 \\ 0.0 & 0.0 & 1.0\end{array}\right)$

Computed:
$\left(\begin{array}{rll}0.997589 & 0.069128 & 0.003283 \\ -0.069904 & 0.997270 & 0.003206 \\ 0.000050 & 0.000030 & 1.0\end{array}\right)$

UPSTREAM DETECTOR - 4° AXIAL ROTATION

Ideal:
$\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0.0 \\ \sin \theta & \cos \theta & 0.0 \\ 0.0 & 0.0 & 1.0\end{array}\right)$

Computed:
$\left(\begin{array}{rll}0.997589 & 0.069128 & 0.003283 \\ -0.069904 & 0.997270 & 0.003206 \\ 0.000050 & 0.000030 & 1.0\end{array}\right)$
$R_{1}=\cos ^{-1}(0.997589) \Rightarrow \theta= \pm 3.979^{\circ}$
$R_{2}=\cos ^{-1}(0.997270) \Rightarrow \theta= \pm 4.234^{\circ}$
$R_{3}=\sin ^{-1}(-0.069904) \Rightarrow \theta=-4.008^{\circ}$
$R_{4}=\sin ^{-1}(-0.069128) \Rightarrow \theta=-3.964^{\circ}$

Upstream detector - 4° axial rotation

Figure: Uncorrected

Upstream detector - 4 deg axial rotation

Figure: Corrected

Upstream detector - 4 deg axial rotation

Figure: Baseline

UPSTREAM DETECTOR - 12MM AXIAL TRANSLATION

Upstream Measured Points vs Ideal Points

Computed:
$\left(\begin{array}{rrl}1.006587 & -0.000506 & 0.003253 \\ -0.000133 & 1.005249 & 0.003159 \\ 0.000051 & 0.000018 & 1.0\end{array}\right)$

Upstream detector - 12mm axial translation

$$
\begin{aligned}
& S_{x}^{\prime}=S_{x}+z_{u}-d z_{u} / 2 \\
& S_{y}^{\prime}=S_{y}+z_{u}+d z_{u} / 2 \\
& k_{x}=S_{x}^{\prime} /\left(S_{x}^{\prime}+\Delta z\right) \\
& k_{y}=S_{y}^{\prime} /\left(S_{y}^{\prime}+\Delta z\right)
\end{aligned}
$$

Ideal:
$\left(\begin{array}{ccc}k_{x} & 0 & 0 \\ 0 & k_{y} & 0 \\ 0 & 0 & 1\end{array}\right)$ Computed:
$\left(\begin{array}{rrl}1.006587 & -0.000506 & 0.003253 \\ -0.000133 & 1.005249 & 0.003159 \\ 0.000051 & 0.000018 & 1.0\end{array}\right)$

Upstream detector - 12mm axial translation

$$
\begin{aligned}
& S_{x}^{\prime}=S_{x}+z_{u}-d z_{u} / 2 \\
& S_{y}^{\prime}=S_{y}+z_{u}+d z_{u} / 2 \\
& k_{x}=S_{x}^{\prime} /\left(S_{x}^{\prime}+\Delta z\right) \\
& k_{y}=S_{y}^{\prime} /\left(S_{y}^{\prime}+\Delta z\right)
\end{aligned}
$$

Ideal:
$\left(\begin{array}{ccc}k_{x} & 0 & 0 \\ 0 & k_{y} & 0 \\ 0 & 0 & 1\end{array}\right)$ Computed:
$\left(\begin{array}{rrl}1.006587 & -0.000506 & 0.003253 \\ -0.000133 & 1.005249 & 0.003159 \\ 0.000051 & 0.000018 & 1.0\end{array}\right)$
$k_{x} \Rightarrow \Delta z=-11.871 \mathrm{~mm}$
$k_{y} \Rightarrow \Delta z=-11.404 \mathrm{~mm}$

Upstream detector - 12mm axial translation

Figure: Uncorrected

Upstream detector - 12mm axial translation

Figure: Corrected

Upstream detector - 12mm axial translation

Figure: Baseline

University
Conclusion and Future Work University

Conclusion and Future Work

- Feasible detector alignment correction

Conclusion and Future Work

- Feasible detector alignment correction
- Alignment using image data instead of alignment scan

Acknolwedgements

- NIU Computer Science Department
- Nicholas Karonis, Cesar Ordoñez, John Winans
- NIU Physics Department
- George Coutrakon
- ProtonVDA
- Fritz DeJongh, Ethan DeJongh, Victor Rykalin
- Northwestern Medicine Proton Center
- James Welsh, Mark Pankuch

