L TR protonVDA

Correcting Detector Plane Misalignment with

Projective Geometry
8th Annual Loma Linda Algorithm Workshop

Kirk Duffin, Nicholas Karonis, Caesar Ordofiez, John Winans,
Fritz DeJongh, Ethan DeJongh

G
"y ® ProtonVDA

19 July 2022



L TR protonVDA

Projective GEOMETRY - HisTORY

2/31



L TR protonVDA

Projective GEOMETRY - HisTORY

® 3rd century - Pappus

2/31



L TR protonVDA

Projective GEOMETRY - HisTORY

® 3rd century - Pappus
® 15th century - geometry of perspective

2/31



2]} Northern Illinois

@ University ProtonVDA.

Projective GEOMETRY - HisTORY

3rd century - Pappus

15th century - geometry of perspective

16th century - Desargues and Kepler - point at infinity, drawing
using vanishing points

2/31



2]} Northern Illinois

@ University ProtonVDA.

Projective GEOMETRY - HisTORY

3rd century - Pappus

15th century - geometry of perspective

16th century - Desargues and Kepler - point at infinity, drawing
using vanishing points

19th century - organize geometry - Felix Klein - Erlangen
program
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ProjecTivE GEOMETRY

® Projective Plane (2D) - Geometric plane plus line at infinity

® Projective Transformations (Homographies) - invariants, straight
lines to straight lines, preserving incidence structures

Properties
® 2 lines always intersect, parallel lines intersect at infinity

parallel lines not preserved = é

® distance not preserved

® angles not preserved

no circles, but conic(s)
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ProjecTIVE TRANSFORMATIONS

In n dimensions there exists a projective transformation to take any
arbitrary (non-collinear) (n + 2) points (projective frame) to any other
arbitrary projective frame.
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HoMmoGeENEOUS COORDINATES

® 1 dimensional point represented ® Cartesian to homogenous
by n + 1 coordinate values. conversion
2D—[x vy w]

® unique up to a scale factor (all wy) =T y 1

zeros not allowed)

[3 2 1] ® Homogeneous to cartesian

[6 4 2] conversion (normalization)

[0.3 02 0.2]

[30 20 10] [x y wl= (x/wy/w)

all represent the same point
¢ Point at infinity has w = 0.
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ProjecTIVE TRANSFORMATIONS

In n dimensions, (n + 1) X (n + 1) linear transformation matrix

Unique up to a scale factor

Includes standard affine transformations — translation, scale,
rotation. Adds perspective transformations.

Transformation composition through matrix multiplication
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pCT

Assumptions:
® Detector planes perpendicular to beam axis
¢ Distance of detector planes from isocenter
¢ Alignment of detector plane axes with beam transverse axes
® Distance of detector planes from beam vergence point
® Detector construction

8/31
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ERROR CORRECTION

® Most errors listed can be described as errors in position and
orientation

® Obvious approach for error correction is to measure and model
each type of error in terms of translations, orientations,
differences from optimal, create adjustments to measured data to
counter error.

® Idea 1: Combine these affine corrections and perspective
projection into single projective transformation matrix.

® Idea 2: Go to 2D
¢ Idea 3: Directly determine final transformation matrix

931
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SOLVING FOR THE MATRIX

Goal: Find 2D (3x3) projective transformation matrix M that will
transform a measured point p,, on a detector into the coordinates of a
point p; on the ideal detector plane.

Xi Mmoo M1 Moz Xim
pi=Mpu,| yi |=| mwo mn mp Ym
w; My Moy 1 1

my, set to 1.
8 remaining parameters to find.
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IDEAL AND MEASURED POINTS

® Spot mean position

® Accelerator plan spot position on isocenter plane projected to
ideal detector plane

® Mean of measured hits of spot as measured point
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SOLVING FOR M

Only 4 point pairs needed in theory.

Direct solution.

Points well spread. Spot separation and domain coverage.

® Sensitive to noise.

Go to overdetermined system
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SOLVING FOR M

Solve using non-linear optimization (modified
Levenberg-Marquardt).

Given k measured points p,, and their corresponding ideal
representations(p,,, p;) point pairs, create 2k expressions to minimize,

X(Mpmj)

w(Mpm]-) - xif
y(MPm]-) )
Wy Y

or
1100 Xm; +m01ym/- +mo2

ngxm]. +m21ym/. +1
1110 Xm; +muym]-+1n1z

ngxm]. +m21ym]. +1 yli
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Upstream Measured Points vs Ideal Points
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Upstream Measured Points vs Ideal Points 1.0000000 0.00000000 Tx
L 0.0000000 1.00000000 T,
B 0.0000000 0.00000000 1.0
10 MO ¥ 4 4 .
5 F O % 4 % 1 Computed:
ol e s ¢ ¢ 4 0.999877  —0.00058758 0.603557
—0.00027545  0.999755  0.0004168
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ke = S/(S, + A2)
k, = Sy/(Sy + Az)

Ideal:
ke 0 0
0 k, 0 | Computed:
0 0 1

-0.000133  1.005249 0.003159

1.006587 —0.000506 0.003253
0.000051  0.000018 1.0

ky > Az =-11.871 mm
k, = Az =-11.404 mm
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ConcrLusioN AND FUTurRe WORK

® Feasible detector alignment correction

® Alignment using image data instead of alignment scan
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