

Updates and future plans for ion imaging at MedAustron

A. Hirtl for the HEPHY / TU Wien ion imaging collaboration

TU Wien, Atominstitut

The 3rd Ion Imaging Workshop 2022, Munich, 2022-10-13

Therapy and research at MedAustron

Image: MedAustron

Four irradiation rooms:

- ➤ IR1: exclusive to research
 - protons: [60,252] MeV & 800 MeV
 - carbon ions: [120,400] MeV/nucleon
- ➤ IR2, IR3, IR4: clinical use

Beam parameters:

- ➤ pencil beam scanning (field 20 cm × 20 cm)
- ➤ [7,21] mm FWHM spot size
- ➤ nominal (clinical) rate:
 - \blacktriangleright protons pprox 10⁹ particles/s
 - carbon ions pprox 10⁷ particles/s

 \Rightarrow too high for most detectors

《曰》《曰》 《臣》 《臣》 드曰

→ low flux commissioned \Rightarrow more later

Facility iCT Future Activities Summary

Irradiation rooms – Workflow

Images: Stock et al. (2018)

Low flux in physics mode

Real-time beam monitoring

- nominal flux too high for single particle tracking
- → flux reduction commissioned ⇒ details: Felix Ulrich-Pur et al. 2021
- ➤ beam diagnostics blind at low flux
 - dedicated beam monitoring developed

Commissioned low flux rates

215

(4) E (4) E (4) E (4)

Spot sizes

문 문

Implementation of research projects at MedAustron

- → research groups have regular access to beam times at MedAustron
 - ▶ dedicated irradiation room ⇒ more later
 - beam times only on weekends
- ➤ three 8 h shifts per day
 - early bird (EB): 6 am 2 pm
 - royal (RO): 2 pm 10 pm
 - vampire (VA): 10 pm 6 am
- → office space and basic infrastructure (labs and equipment) available at MedAustron
 - basic electronics (rack, VME crate with modules), oscilloscope, 1 T magnet
 - dosimetric equipment (various ionisation chambers), TLD reader and oven
 - x-ray source
 - pre-clinical lab (with micro-PET/SPECT/CT)

Non-clinical irradiation room – IR1

Images: MedAustron & A. Burker

Room properties

- \rightarrow area of 8 m \times 12 m = 96 m²
- ➤ LASER positioning system
- ➤ two iso-centres (one used)
- ➤ robotic positioning system with imaging ring (CT)

→ can be monitored from the control room by webcam

Non-clinical irradiation room – IR1

Images: MedAustron & A. Burker

Special features for research

- ➤ full clinical work flow
 - all ions
 - scanning
- \blacktriangleright physics mode of accelerator

 $| ow flux | \Rightarrow no scanning!$

- ➤ proton energies up to 800 MeV
 - energies between 250 MeV and 800 MeV possible

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Irradiation rooms – Summary

Image: MedAustron

Ion imaging at TU Wien and HEPHY

How it started

- → Joint ion imaging project of TU Wien and HEPHY started in 2017
 - Iong-term experience in detector development at HEPHY
- → Access to regular beam times at the MedAustron facility
- Establishment of full workflow from scratch to implement ion imaging
 - hardware trackers and calorimeter/range telescope \Rightarrow details: Ulrich-Pur et al. 2020
 - 2 software data readout, processing and 3D image reconstruction
- → Collaboration with Medical University of Vienna (2019)
 - experience in CT image reconstruction
 - ► TIGRE toolbox (developed for conventional CT) applied to the ion CT reconstruction problem ⇒ details: Kaser et al. 2021

Ion imaging at TU Wien and HEPHY

How it started

- \blacktriangleright Joint ion imaging project of TU Wien and HEPHY started in 2017
 - Iong-term experience in detector development at HEPHY
- → Access to regular beam times at the MedAustron facility
- Establishment of full workflow from scratch to implement ion imaging
 - hardware trackers and calorimeter/range telescope \Rightarrow details: Ulrich-Pur et al. 2020
 - 2 software data readout, processing and 3D image reconstruction
- → Collaboration with Medical University of Vienna (2019)
 - experience in CT image reconstruction
 - ► TIGRE toolbox (developed for conventional CT) applied to the ion CT reconstruction problem ⇒ details: Kaser et al. 2021

 \Rightarrow demonstrator based on existing technology built

Sketch of experimental set-up tested at MedAustron

Image: iCT demonstrator set-up (\Rightarrow Ulrich-Pur et al. 2021)

- → demonstrator based on double sided silicon strip detectors (DSSDs) and a range telescope
- → synchronisation via AIDA2020 trigger and logic unit (TLU) (\Rightarrow Cussans 2017)
 - exclusive trigger number per particle to correlate tracks and energy loss
- \rightarrow an aluminium cube with a stair profile (side length of 1 cm) on a rotating table was imaged
- ➤ image reconstruction using an iterative algorithm available in TIGRE

Demonstrator at MedAustron

Particle tracking:

- 4 DSSDs (2.56 × 5.12) cm²
- 300 µm thickness and 512 strips
- pitch: 50 μm (X), 100 μm (Y)
- ► tracker readout: APV25 chip & Belle-II SVD readout chain ⇒ details: French et al. 2001
- tracking with Corryvreckan ⇒ details: Dannheim et al. 2021

Demonstrator at MedAustron

Particle tracking:

- 4 DSSDs (2.56 × 5.12) cm²
- 300 μm thickness and 512 strips
- pitch: 50 μm (X), 100 μm (Y)
- ► tracker readout: APV25 chip & Belle-II SVD readout chain ⇒ details: French et al. 2001
- tracking with Corryvreckan ⇒ details: Dannheim et al. 2021

- range telescope using plastic scintillators with SiPMs
- 42 slices (3 × 300 × 300 mm³)
- can measure protons up to 140 MeV
- ► USB readout (DAQrate \approx 15 kHz) \Rightarrow details: Bucciantonio et al. 2013; claim DAQrate < 1 MHz
- SiPM power supply unstable

 \Rightarrow complete redesign of mainboard

Mainboard before and after & a bug

Original:

Domestic bug:

・ロン ・日 ・ ・ ヨン ・ ヨン

After redesign:

➤ stable operation possible

 \approx 900 pCT events per second

Calibration of range telescope

Calibration of range telescope

- estimation of mean water equivalent thickness (WET) of the calorimeter components
 - ranges are measured for different proton energies
 - comparison to NIST data for WET estimation of trigger scintillators and TERA scintillators

Range determination

last slice over threshold and first slice under threshold defines range

Particle tracking & influence of detectors

- ➤ study system parameters with MC
 - ▶ by varying X₀, clearances, energy, . . .
- ➤ iso-resolution contours (image right)
 - resolution achievable from tracking (path estimate) only
- → huge parameter space!
 ⇒ details: Burker et al. 2020

Images: PhD A. Burker

Testbeam at MedAustron

2D projections

Performed measurements:

- ➤ 100.4 MeV protons
- \blacktriangleright 80 projections with $\approx 2.5 \times 10^6$ events (24 min) each
 - $\blacktriangleright\,$ only $\approx 6.5 \times 10^5$ synchronized events per projection (mean event rate $\approx 450\,\text{Hz})$

➤ using TIGRE - Tomographic Iterative GPU-based REconstruction toolbox

open source framework developed for x-ray CT ⇒ details: Biguri et al. 2016

315

The TIGRE toolbox

→ iterative (and direct) reconstruction algorithms

- → TIGRE suitable for ion CT image reconstruction
 - straight-line approach for ion path \rightarrow data cuts for improved image resolution \Rightarrow details: Kaser et al. 2021

RSP reconstruction from experimental data

- stair profile clearly visible in the reconstruction (OS-SART with 10 iterations), straight line and cuts
 - orange line: median value; green triangle: average RSP in a ROI
- → MPV error below 1% could be achieved

Improving the reconstruction workflow with TIGRE I

Pre-processing step to allow for ion CT reconstruction implemented

- → basic idea: assign one ion to multiple pixels depending on path estimate ⇒ details: Collins-Fekete et al. 2016
- ➤ implementation using CUDA → now part of the TIGRE toolbox^a
- extension tested with Monte Carlo data

Improving the reconstruction workflow with TIGRE II

Phantoms:

- → phantom patient for stereotactic end-to-end verification (STEEV) (CIRS, Norfolk, VA, USA)
- → Catphan[®] 528 & 404 (The Phantom Laboratory Incorporated, Salem, NY, USA)

Acknowledgement: B. Knäusl and M. Stock for providing the CT image of the CIRS head phantom.

Reconstructions of CTP modules

➤ MAPE < 0.5%</p>

➤ CTP528 (High Resolution)

➤ Resolution: 6 lp/cm (non-ideal data set) and 8 lp/cm (ideal data set)

문 문

Reconstructed head phantom

- \rightarrow CT scan of head phantom implemented in GATE
- → 90 proton radiographs (\approx 50 protons/pixel) used for reconstruction (ASD-POCS algorithm) \Rightarrow details: Kaser et al. 2022

➤ Reconstructed XZ-plane

➤ Reconstructed YZ-plane

Other investigated modalities with the demonstrator

- multiple Coulomb scattering imaging
- ➤ fluence loss (attenuation) imaging

 \Rightarrow see talk by S. Kaser tomorow 14.10.2022 at 15:40

Facility iCT Future Activities Summary

Future direction: time-of-flight iCT

→ 4D tracking using fast detectors ⇒ low-gain avalanche detectors (LGADs)

→ residual energy estimated via time-of-flight (TOF) measurement

 \Rightarrow see talk by F. Ulrich-Pur tomorow 14.10.2022 at 11:40

(E) (E)

From low flux commissioning to synergies with MedAustron

Beam diagnostics at MedAustron

- ➤ blind at low fluxes
- ➤ suffers from radiation damage after long use

Idea to implement new monitoring system based on

- ➤ radiation hard detectors
- ➤ with high dynamical range to cover
 - Hz to MHz region for research
 - GHz for regular therapy
 - GHz for FLASH therapy
- \rightarrow survive the harsh conditions as long as possible
- be operated under high-vacuum conditions without additional cooling

 \Rightarrow detectors based on silicon carbide – SiC

SiC properties

- ➤ wider band gap & less dark current
- ➤ fast signals & radiation hard

• • = • • = •

From low flux commissioning to synergies with MedAustron

Beam diagnostics at MedAustron

- ➤ blind at low fluxes
- ➤ suffers from radiation damage after long use

Idea to implement new monitoring system based on

- ➤ radiation hard detectors
- ➤ with high dynamical range to cover
 - Hz to MHz region for research
 - GHz for regular therapy
 - GHz for FLASH therapy
- ➤ survive the harsh conditions as long as possible
- be operated under high-vacuum conditions without additional cooling

 \Rightarrow detectors based on silicon carbide – SiC

SiC properties

- ➤ wider band gap & less dark current
- ➤ fast signals & radiation hard

Functionality tested at MedAustron

From low flux commissioning to synergies with MedAustron

Beam diagnostics at MedAustron

- ➤ blind at low fluxes
- ➤ suffers from radiation damage after long use

Idea to implement new monitoring system based on

- ➤ radiation hard detectors
- ➤ with high dynamical range to cover
 - Hz to MHz region for research
 - GHz for regular therapy
 - GHz for FLASH therapy
- ➤ survive the harsh conditions as long as possible
- be operated under high-vacuum conditions without additional cooling

 \Rightarrow detectors based on silicon carbide – SiC

SiC properties

- ➤ wider band gap & less dark current
- ➤ fast signals & radiation hard

Functionality tested at MedAustron

イロト イボト イヨト イヨト

Use in microdosimetry?

Other detector options for tracking

MALTA HV CMOS from CERN

 \rightarrow 4 sensor planes tested in a joint beam time at MedAustron by a team from CERN

- ▶ 512 × 512 squared pixels with 36.4 μ m pitch \Rightarrow area 1.8 cm²
- functioning was demonstrated
- \rightarrow could be used for tracking at high rates
 - HEPHY is developing DMAPS sensors for other HEP projects

Summary & Outlook

Summary

- → started ion imaging effort in 2017 as common effort of HEPHY & TU Wien
 - hardware expertise at HEPHY
- → regular access to beam times at MedAustron in a dedicated irradiation room
 - currently protons (low flux!) and carbon ions available
 - helium ions in commissioning phase
- ➤ full iCT workflow established
 - implemented demonstrator system & established image reconstruction
 - 3 PhDs finished (tracking, calorimetry & image reconstruction)

Outlook

- → TOF-iCT based on fast detectors (LGADs)
- ➤ funding required
 - Austro-French joint projects (ANR FWF) with S. Rit (CREATIS HEPHY TU Wien)
 - iCT activities in synergy with other hardware projects at HEPHY
- ➤ increase in hardware activities required!

315

Effort of many!

Staff

- ➤ Thomas Bergauer
- ➤ Christian Irmler
- → Florian Pitters
- numerous engineers and technicians from HEPHY

PhDs

- → Alexander Burker (PhD tracking)
- Stefanie Kaser (PhD image reconstruction) ⇒ talk tomorow at 15:40
- ➤ Felix Ulrich-Pur (PhD calorimetry & TOF) ⇒ talk tomorow at 11:40

MSc

- ➤ Benjamin Huber
- ➤ Benjamin Kirchmayer
- → Vera Teufelhart

BSc

➤ many BSc students

Collaborators

- ➤ Sepideh Hatamikia (ACMIT)
- Wolfgang Birkfellner, Dietmar Georg (MedUni Wien)

- → Ander Biguri (University of Cambridge)
- ➤ Simon Rit & Nils Krah (CREATIS)

References & Appendix

References

- Biguri, Ander et al. (Sept. 2016). "TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction". In: Biomedical Physics & Engineering Express 2.5, p. 055010. DOI: 10.1088/2057-1976/2/5/055010.
- Bucciantonio, M. et al. (DEC 21 2013). "Development of a fast proton range radiography system for quality assurance in hadrontherapy". In: <u>NIM A</u> 732. 13th Vienna Conference on Instrumentation, Tech Univ Vienna, Vienna, AUSTRIA, FEB 11-15, 2013, 564–567. DOI: 10.1016/j.nima.2013.05.110.
- Burker, A. et al. (2020). "Single particle tracking uncertainties in ion imaging". In: DOI: 10.48550/ARXIV.2008.08422. URL: https://arxiv.org/abs/2008.08422.
- Collins-Fekete, Charles-Antoine et al. (Nov. 2016). "A maximum likelihood method for high resolution proton radiography/proton CT". In: <u>Physics in Medicine and Biology</u> 61.23, pp. 8232–8248. DOI: 10.1088/0031-9155/61/23/8232. URL: https://doi.org/10.1088/0031-9155/61/23/8232.
- Cussans, David (Dec. 2017). "Triger Logic Unit ready". In: URL: http://cds.cern.ch/record/2297522.
- Dannheim, D. et al. (Mar. 2021). "Corryvreckan: a modular 4D track reconstruction and analysis software for test beam data". In: Journal of Instrumentation 16.03, P03008. DOI: 10.1088/1748-0221/16/03/p03008.
- French, M.J. et al. (2001). "Design and results from the APV25, a deep sub-micron CMOS front-end chip for the CMS tracker". In: <u>NIM A</u> 466.2. 4th Int. Symp. on Development and Application of Semiconductor Tracking Detectors, pp. 359–365. ISSN: 0168-9002. DOI: 10.1016/S0168-9002(01)00589-7.
- Kaser, Stefanie et al. (2021). "First application of the GPU-based software framework TIGRE for proton CT image reconstruction". In: Physica Medica 84, pp. 56–64. DOI: 10.1016/j.ejmp.2021.03.006.
- Kaser, Stefanie et al. (2022). "Extension of the open-source TIGRE toolbox for proton imaging". In: Zeitschrift für Medizinische Physik. DOI: 10.1016/j.zemedi.2022.08.005.

Stock, Markus et al. (2018). "The technological basis for adaptive ion beam therapy at MedAustron: Status and outlook". In: ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK 28.3, 196–210. ISSN: 0939-3889. DOI:

{10.1016/j.zemedi.2017.09.007}.

Ulrich-Pur, F et al. (2020). "Imaging with protons at MedAustron". In: NIM A 978, p. 164407. DOI:

https://doi.org/10.1016/j.nima.2020.164407. URL:

http://www.sciencedirect.com/science/article/pii/S0168900220308044.

Ulrich-Pur, F et al. (2021). arXiv: 2106.12890 [physics.med-ph].

Ulrich-Pur, Felix et al. (2021). "Commissioning of low particle flux for proton beams at MedAustron". In: NIM A 1010,

p. 165570. ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2021.165570. URL:

https://www.sciencedirect.com/science/article/pii/S0168900221005556.

