14.10.2022

Proton radiography as a quality control tool for 3D and 4D thorax synthetic CTs

Carmen Seller Oria Department of Radiation Oncology, University Medical Center Groningen Groningen, The Netherlands

	COI status	Names of companies / organizations
① Post of executive / consultant	No	
② Stocks	No	
③ Patent royalties	No	
④ Stage moneys/Man	No	
⑤ Off Label Devices	Yes	Proton Range Devices, Clinical Infrastructure Platform and Software, AI Algorithms
6 Grant / Research funding	Yes	Department of Radiation Oncology has research collaborations with: IBA, Siemens, Mirada, Elekta and VisionRT
⑦ Other rewards	No	

Online adaptive proton therapy

Plan adaptation

Online adaptive proton therapy

- Lack of tools:
 - High quality daily 3D images \rightarrow synthetic CTs
 - Quality control tools → proton radiography

Synthetic CT generation via DL

Synthetic CT (3D, 4D)

CBCT Right before treatment Wrong CT numbers Image artefacts

🗧 2D Conv 3x3, ReLu 📒 MaxPool 2x2 📄 Direct connection 🧧 Copy 🛄 Upecale 📃 2D Conv 1x1, Linear

- Deep conv. neural network
 - U-net
- CT CBCT image pairs
- 25 patients
- 4D-sCTs:
 - 3D CBCTs phase binned
 - 4D reconstruction (MC-Rooster)

Synthetic CT generation via DL

3D-CBCT 4D-CBCT Input **3D-sCT**

Output

4D-sCT

Different CBCT image quality for 3D and 4D training

Quality control of synthetic CTs

Synthetic CT (3D, 4D) Safe to use in clinic?

Proton radiography Quality control

- Proton dose calculations
 on synthetic CTs
- Implementation in adaptive workflows
- Daily anatomy

Why do we need quality control tools?

- Detect outliers in DL output
 - Anatomical abnormalities
 - Positioning
 - Implants
 - Acquisition settings
 - System updates

Elements that fall outside the training distribution

Why do we need quality control tools?

- Detect outliers in DL output
 - Anatomical abnormalities
 - Positioning
 - Implants
 - Acquisition settings
 - System updates

Aim of this study

Evaluate 3D and 4D thorax synthetic CTs in terms of CT number accuracy via proton radiography simulations

Synthetic CT

Proton radiography simulations

- Gantry angle 0 degrees
- Multi-layer ionization chamber
- 15 patients

۲

- Range errors maps in 3 scenarios:
- 1. 3D sCT
- 2. 4D sCT (50%)
- 3. average 4D sCT

CT

Examples of sCT quality

Examples of sCT quality

Range error map quantification

- Mean (MRE) and standard deviations (SD)
 - a) whole anatomy
 - b) only lung tissue
 - c) whole anatomy excl. lung

Results: whole anatomy

- High variability across patients: MREs between 0.0±1.0mm and 0.6±5.6mm
- Comparable results between 3D and 4D
- Systematically positive MREs → why?

Results: lungs

- Increased MRE and SDs in lungs
- Lower CT number accuracy in lung tissue

Results: anatomy excl. lungs

Reduced MREs and SDs in the rest of the anatomy

Conclusions

- Proton radiography as a quality control tool for synthetic CTs.
- Highlight CT number inaccuracies in synthetic CTs.

RESEARCH ARTICLE 🖻 Open Access 💿 😧 🗐 😒

Deep learning–based 4D-synthetic CTs from sparse-view CBCTs for dose calculations in adaptive proton therapy

Adrian Thummerer 🗙 Carmen Seller Oria, Paolo Zaffino, Sabine Visser, Arturs Meijers, Gabriel Guterres Marmitt, Robin Wijsman, Joao Seco ... See all authors 🤟

First published: 18 August 2022 | https://doi.org/10.1002/mp.15930

• CT number accuracy of synthetic CTs is particularly challenging in lung tissue.

Future perspectives

- In vivo range verification in thoracic patients
 - Patient specific dosimetry checks
 - 4D synthetic CT validation with ground truth measurements

• QA workflows for AI-based tools in the clinic

Acknowledgements

- Adrian Thummerer
- Antje C. Knopf
- Arturs Meijers
- Jeffrey Free
- Sabine Visser
- Gabriel Guterres Marmitt
- Johannes A. Langendijk
- Stefan Both

Questions/Feedback? c.seller.oria@umcg.nl

Thank you for your attention!