

RSP accuracy and Spatial Resolution Comparison of Two Proton Computed Tomography Scanners

<u>G. Dedes</u>¹, H. Drosten¹, S. Götz¹, J. Dickmann¹, C. Sarosiek², M. Pankuch³, N. Krah⁴, S. Rit⁴, V. Bashkirov⁵, R. W. Schulte⁵, R.P Johnson⁶, K. Parodi¹, E. DeJongh⁷ and G. Landry^{8,9}

¹Ludwig-Maximilians-Universität München

⁴ Université de Lyon

⁷ ProtonVDA Inc

² Medical College of Wisconsin
⁵ Loma Linda University

³ Northwestern Medicine Chicago Proton Center

⁶ U.C. Santa Cruz

⁸ University Hospital, LMU Munich ⁹ German Cancer Consortium (DKTK)

- Different pCT prototype concepts:
 - "Full" vs. "partial" tracking
 - > Energy detection, range detection, time-of-flight, detector segmentation etc.
 - Cost and complexity
 - ➢ Speed
 - ≻…
- Performance of two pCT scanners of different design approaches
 - > At the same facility (Northwestern Medicine Chicago Proton Center)
 - Scanned the same object of known RSP
 - Reconstructed with the same algorithm
 - Quantify RSP accuracy and spatial resolution (SRes)

phase-II prototype scanner (LLU/UCSC)^[1]

- Position and direction upstream and downstream (full tracking)
- 5-stage scintillator hybrid energy detector
- ~1 MHz count rate
- 9 cm x 32 cm FOV
- 200 MeV protons (for this acquisition)

ProtonVDA scanner^[2]

- Single position upstream and downstream
- Direction upstream by virtual source (accelerator) and position
- Direction downstream by position and MLP
- Compact energy detector
- Energy modulation (118, 160, 187 MeV)

- Filtered backprojection accounting for curved proton paths^[3]
- Based on the concept of "Distance driven binning"

Phantom

Insert	RSP _{ref}
Cortical bone	1.555 ± 0.004
Trabecular bone	1.100 ± 0.003
Spinal disc	1.070 ± 0.003
Enamel	1.755 ± 0.004
Dentin	1.495 ± 0.004
Sinus	0.200 ± 0.005
Phantom body	0.980 ± 0.002
Spinal cord	1.040 ± 0.003
Brain	1.040 ± 0.003

- Wax body and 8 cylindrical plastic tissue equivalent inserts
- RSP range from **0.20** to **1.76**
- Insert radii: 18 mm
- Phantom diameter: 180 mm

- Phase-II scanner:
 - Track quality cuts
 - ➢ ADC signal to WEPL calibration
 - ➤ 3-sigma in WEPL and angle

- ProtonVDA scanner:
 - Estimation of entry/exit directions
 - Merging of the different energy datasets
 - ➤ 3-sigma in WEPL and angle

- 90 projections at 4 deg steps (for time reasons)
- Ring shaped artifacts
- Undersampling streak artifacts vanish in 360 projection acquisition
- Scan duration: **300 sec** for phase-II and **120 sec** for ProtonVDA

- RSP accuracy mostly within ±1% for both scanners
- Above 1% errors for phase-II:
 - Sinus: -4.50%, RSP_{ref} = 0.20 (porous insert)
 - Phantom body: -1.33%, RSP_{ref} = 0.98 (ring artifacts)
- Above 1% errors for ProtonVDA:
 - Sinus: -1.50%, RSP_{ref} = 0.20 (porous insert)
 - Phantom body: -2.40%, RSP_{ref} = 0.98 (ring artifacts)
- Mean absolute percent error (MAPE):

> over all materials: 1.14% for phase-II, 0.81% for ProtonVDA

> excluding sinus insert: **0.72%** for both

- Comparing also against an iterative reconstruction algorithm
- Image was provided by ProtonVDA

Less artifacts

Same RSP MAPE

• Evaluated as modulation transfer function (MTF) on the radial edge spread function (ESF)^{[4],[5],[6]}

• Axial SRes for the two scanners at a radial position of ~150 mm:

	f ^{phase–II} MTF ₁₀	
Insert	(lp/mm)	f ^{pVDA} MTF ₁₀
Cortical bone	0.61 (0.02)	0.47 (0.02)
Dentin	0.62 (0.02)	0.44 (0.02)
Enamel	0.59 (0.01)	0.48 (0.02)
Mean	0.61 (0.01)	0.46 (0.01)

- Phase-II SRes comparable to that quantified in a different study, using same scanner and a slightly different object^[7]
- Phase-II higher SRes, reflecting full tracking
- Deterioration of SRes consistent with past theoretical predictions^[8]

Direct experimental comparison of two pCT scanners/different designs:

 \blacktriangleright RSP accuracy equal or better than 1% for both

Position measurement only, factor 1.2-1.4 lower SRes

Hubertus Drosten¹

Mark Pankuch³

Guillaume Landry^{1,8,9}

Stefanie Götz¹

DOI: 10.1002/mp.15657

George Dedes¹

Christina Sarosiek²

Vladimir Bashkirov⁵

Ethan DeJongh⁷

RESEARCH ARTICLE

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

2020

ı Parodi

Backup

(b) $1.5 \,\mathrm{MeV}$

(c) $1.75 \,\mathrm{MeV}$

(d) $2 \,\mathrm{MeV}$

(e) $2.25 \,\mathrm{MeV}$

(f) $2.5 \,\mathrm{MeV}$

(h) 3 MeV

- Protons stopping near stage interfaces yield less accurate information
- In homogeneous cylindrical objects this results in ring artifacts
- Calculating for each voxel, the fraction of protons stopping near stage interfaces

