

Proton imaging for small animals: status and perspectives

K. Parodi

Chair of the Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany

Emerging small animal radiotherapy research platforms for protons and heavier ions

However limited to morphological image guidance typically with X-ray CBCT

WP2a: Proton radiography (pRAD)/tomography (pCT)

Pre-treatment radiographic & tomographic imaging

- Vertical irradiation position for imaging & treatment
- In-house holder accommodating sterility, anaesthetization and temperature stabilization, with minimal material budget and possibility of acoustic coupling
- Proton radiography for alignment and recovery of water equivalent thickness (WET)
- Proton tomography for assessment of tissue stopping power relative to water, SPR)

3 solutions being developed for conventional & synchrocyclotron-based facilities

J. Bortfeldt et al, to be published

WP2a: Proton radiography (pRAD)/tomography (pCT)

Single particle

dE-measurement

Integrated dE-measurement

Single particle tracking and residual range measurement

Proton radiography/tomography with pixelated detectors

1. Integrated dE-measurement with commercial CMOS detectors

Large area CMOS detectors with linear signal decomposition method to determine WET

Schnürle PhD project, Schnürle et al, submitted to Front Phys

Schnürle PhD project, Schnürle et al, submitted to Front Phys

Schnürle PhD project, Schnürle et al, submitted to Front Phys

Proton radiography/tomography with pixelated detectors

Lascaud, Dash, Schnürle...Parodi, PMB 2022

Proton radiography/tomography with pixelated detectors

2. Single particle dE-measurement with commercial CMOS detectors

Commercial pixel-detectors

- High dose (> 1 mGy per radiography)
- Do not account for Coulomb scattering
- Relatively simple detectors
- Single particle detection

Detect energy deposition of individual particles Minipix/Timepix, able of single particle detection (collaboration with Advacam Radiation imaging Solutions)

Würl et al, IEEE MIC Conference Records 2020

WP2a: Proton radiography (pRAD)/tomography (pCT)

3. Single particle tracking with in-house developed gas detectors

Detailed Monte Carlo modeling including all components and realistic beam

S. Meyer et al, PMB 2020; J. Bortfeldt et al, to be published

7

pRad/pCT with in-house gas-based detectors

Ongoing work to

Commission full prototype system

Just concluded beamtime at DPTC in Aarhus and data analysis in progress

 Interface exp. data to iterative image reconstruction framework

Bortfeldt et al, MPGD 2019 & Small animal conference 2022; ongong PhD project G. Hu; Holthoff et al, DGMP 2022 & ongoing MSc project

Conclusion & Outlook

- Developed several small animal pRad/pCT systems, from integrating to single-particle tracking detectors
- Promising performance in terms of WET/SPR accuracy and sub-mm spatial resolution for realistic setups
- Ongoing data analysis of recent experimental campaigns will enable more in-depth assessment for final • workflow in SIRMIO platform

Experimental campaigns at Danish Centre for Proton Therapy, Sept 2021 & 2022

Schneider et al, Front Oncol 2022

Verhaegen et al, submitted to PMB

