

Flash particle radiography with p⁺ / 4He²⁺ -- an overview

3rd ion imaging workshop

Martin Schanz P-1 Dynamic Imaging & Radiography 10/14/2022

LA-UR-22-30636

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA

Outline

- Lens-based Particle (p⁺) Radiography
 - History & Concept
 - Setup & Common Applications @ LANL
- Previous Medical Experiments
 - Phantom / Small Animal Imaging
 - Proton aided xCT Calibration
- Dual-lens Imaging and Treatment with p⁺ or 12C⁶⁺/4He²⁺
 - Concept
 - Geant4/BDSIM/TOPAS/PROSIT Simulations

Lens-Based Particle Radiography History

D. West, A.C. Sherwood, Nature **239**, 1972

Lens-Based Particle Radiography Concept

Lens-Based Particle Radiography Concept

Lens-Based Particle Radiography Concept

6

Lens-Based Particle Radiography

Typical pRad Applications

Halfpipe

- Interactions of two different types of explosives
- Initiation
- Detonation front propagation

Dynamic material strength

Stress induced material failure in various metals

Aluminum

Tantalum

Medical Proton Imaging Matroshka Phantom / Projections & Tomography

Prall, M., et al. High-energy proton imaging for biomedical applications. Sci Rep 6, 27651 (2016)

Medical Proton Imaging Various Biological Samples

Mouse Tomography (2015 & 2022) 800MeV LANL 2.5 GeV GSI

Chicken Wing Tomography (2016)

800MeV LANL

Prall, M., et al. High-energy proton imaging for biomedical applications. Sci Rep 6, 27651 (2016)

Towards Online Imaging/Treatment Verification

Carbon treatment & full-scale imaging with parasitic Helium ions?

Dual-Lens Treatment & Imaging (p+ or 12C/4He mixed beam)

Dual-Lens Treatment & Imaging (p+ or 12C/4He mixed beam)

Dual-Lens Treatment & Imaging (p+ or 12C/4He mixed beam)

Dual-Lens Treatment & Imaging - 800MeV p⁺ & 4He²⁺ 230MeV/u imaging results

Treatment distribution

- Precise mapping of MLC shape on patient (edge resolution <30µm)
- Remaining transmission <0.1% due to system acceptance

Image of treated area

- Spatial resolution between 50µm and 800µm depending on target geometry
- Density resolution of <1%

Dual-Lens Treatment & Imaging – 800MeV p⁺ & 4He²⁺ 230MeV/u imaging results

Pattern embedded in:

Medical Particle Imaging Dual-Lens Treatment & Imaging – 800MeV p⁺ & 4He²⁺ 230MeV/u imaging results

Pattern embedded in:

Outlook

4He²⁺ flash radiography GSI PRIOR-II proposal for 2023/2024 Combining dual-lens and 4He²⁺ flash radiography 202X?

Dual-lens p⁺ imaging LANL pRad proposal for 2023

