The 5th ion imaging workshop

Experimental Proton and Helium Scanning Beam Radiography with Clinical Scanner Prototype

Alexander Pryanichnikov*, Jennifer Hardt, Lukas Martin, Ethan DeJongh, Don DeJongh, Stephan Brons, Oliver Jäkel, Niklas Wahl and Joao Seco

*alexander.pryanichnikov@dkfz-heidelberg.de

Agenda

1. Helios project

- 2. Imaging detector features
- 3. Beam delivery features
- 4. First results of the integration
- 5. Conclusion

Motivation and research question

[2] Bosch de Basea Gomez M et al. Nat. Med. 2023; 29:3111–3119.

Range guided adaptive particle therapy (RGAPT)

pRad/HeRad Particles from a single angle Relative to RSP map

- Check integrated range
- Check alignment

The idea is to use two particles with close to a constant mass/charge ratio for simultaneous imaging and treatment :

- ²D⁺ and ⁴He²⁺
- ⁴He²⁺ and ¹²C⁶⁺

Principle of the experimental setup

- Beam position detectors;
- Calorimeter for measuring of residual energy;
- Reconstruction algorithms.

HELIOS is based on the well-established technologies **HIT** multi-ion beam delivery (not in the same time) and **ProtonVDA** imaging detector (developed for specific proton beams).

HELIOS Project Structure

Developing a HELium Imaging Oncology Scanner for Range Guided Radiotherapy (RGRT) for Non-Small Cell Lung Cancer (NSCLC)

Development and customization of HELIOS prototype for ion imaging *Talk by Lukas Martin*

Development of forward simulation and treatment planning framework *Talk by Jennifer Hardt*

Testing treatment planning and reconstruction framework for adaptation purpose

- 1. Helios project
- **2.** Imaging detector features
- 3. Beam delivery features
- 4. First results of the integration
- 5. Conclusion

Imaging detector: principle of operation

Proton imaging detector system is optimized for:

- 40 cm \times 40 cm field of view;
- 3 MHz readout rate;
- narrow scanning beam.

Detector consists of:

- Two (upstream / downstream) beam position trackers with two layers for horizontal and vertical readings, every layer - 384 scintillating fibers of 1 mm width;
- Residual range detector with monolithic scintillator and 16 PMTs;
- DAQ system with 4 ADC channels and 128 digital I/O channels.

Imaging detector: beam position trackers

N, name	Thickness (cm)	Density(g/cm3)
1, Black Kapton film	0.0075	1.42
2, Rohacell HF 031	0.6	0.032
3, Scint. fibers Y1	0.1	1.05
4, Scint. fibers Y2	0.1	1.05
5, Scint. fibers X1	0.1	1.05
6, Scint. fibers X2	0.1	1.05
7, Rohacell 31	0.6	0.032
8, Black Kapton film	0.0075	1.42

12 fibers per 1 SiPM Readings only every 32 mm

10/24/2024 |Page 9

Imaging detector: range detector

Range detector:

- PCB base to provide high voltage
- PMT to detect light
- Scintillator Block Unit, produces light when proton crosses the scintillating material
- 4 ADC channels:
 - E, the sum of the sixteen PMT signals
 - U, Diagonal sum with different weights
 - V, Diagonal sum with different weights
 - C, the sum of the central PMTs.

U						
	+1	+2	+3			
-1		+1	+2			
-2	-1		+1			
-3	-2	-1				

V					
-3	-2	-1			
-2	-1		+1		
-1		+1	+2		
	+1	+2	+3		

Imaging detector: operation process

- Event = Trigger (Energy detector) && Upstream Tracker (4 hits) && Downstream Tracker (4 hits);
- Calibration of the energy detector to obtain covariance matrix for each spot (X, Y, Residual Range):

$$K_{EUV} = \begin{bmatrix} cov(EE) & cov(EU) & cov(VE) \\ cov(UE) & cov(UU) & cov(UV) \\ cov(VE) & cov(VU) & cov(VV) \end{bmatrix}$$
$$\chi^{2} = \Delta^{T} K_{euv}^{-1} \begin{bmatrix} E - \overline{E} \\ U - \overline{U} \\ V - \overline{V} \end{bmatrix}$$

- Low energy cut to filter our fragments;
- χ^2 filter in the data preprocessing stages;
- 3 sigma filter during image reconstruction.

- 1. Helios project
- 2. Imaging detector features
- **3.** Beam delivery features
- 4. First results of the integration
- 5. Conclusion

Heidelberg Ion Therapy Center (HIT) – beam source

- Synchrotron based facility
- 2 Treatment + 1 **Experimental room** with fixed beam, 1 Gantry
- Multi ions: **p, He**, C, O
- Beam energy: 50 430 Mev/u
- Pulsed mode
- Continuous scanning
- Beam intensity for protons: $1.2 \times 10^8 - 2 \times 10^{10}$
- Beam intensity for helium ions: $2 \times 10^7 5 \times 10^9$
- Beam intensity for carbon ions: $2 \times 10^6 5 \times 10^8$

Standard slow multi-turn extraction @ HIT

Key HIT beam parameters:

- Proton and helium beam @ 50 220 MeV/u;
- 20 cm × 20 cm active scanning field;
- σx , σy from 4.9 to 20 mm.

Manual low intensity extraction @ HIT

(u-v)/e

Scanning pattern in the manual mode

Beam is unstable and not repeatable

- 1. Helios project
- 2. Imaging detector features
- 3. Beam delivery features
- 4. First results of the integration
- 5. Conclusion

Beam position synchronization

Experimental data: first proton and helium images

Proton radiograph, 120 MeV, around 3000 protons per spot

Helium radiograph, 80 MeV/u, around 1000 helium ions per spot

Experimental data: alignment and WET check

Experimental data (motion phantom): single energy 4DCT

CT data from Siemens SOMATOM system, 120 kV.

Experimental data (motion phantom): pRad(t) @ NMCPC

beams were spaced every 5 mm, around 125 ms per frame, around 500 protons per spot $T = 3.28 \pm 0.01$ s, $T_{meas} = 3.3 \pm 0.1$ s

Experimental data (motion phantom): p/HeRad(t) @ HIT

Proton radiograph, 121.95 MeV, 10 cm x 10 cm field, beams were spaced every 5 mm, around 560 ms per frame, around 1000-1200 protons per spot Helium radiograph, 80.64 MeV, 10 cm x 10 cm field, beams were spaced every 5 mm, around 450 ms per frame, around 150-600 ions per spot

WET, cm

Experimental data (motion phantom): p/HeRad(t) @ HIT

Experimental data: single energy pRads

Proton radiograph, 93.79 MeV

Proton radiograph, 108.88 MeV

Proton radiograph, 121.95 MeV

Experimental data: multi energy pRad

Proton radiograph, combined 93.79, 108.88 and 121.95 MeV

Experimental data: abdominal phantom

Proton radiograph, single energy, 210 MeV

Proton radiograph, single energy, 210 MeV

26

25

24

- 23

- 22

- 21

10/24/2024 |Page 26

- 1. Helios project
- 2. Imaging detector features
- 3. Beam delivery features
- 4. First results of the integration
- **5.** Conclusion

Conclusions

- 1. Adapted the beam delivery mode to the detector parameters;
- 2. Achieved working mode with both positioning trackers, allowing to obtain high quality, low noise static proton and helium radiographs;
- 3. Demonstrated the ability to obtain fast (so far noisy) moving proton and helium radiographs;
- 4. Demonstrated the ability to work with a single positioning tracker for helium ion radiography (*Talk by Lukas Martin*).
- 5. Tested pCT and HeCT mode, need to obtain and process more data.

Thank you for your attention!

This work is funded by the Deutsche Forschungsgemeinschaft (DFG) – Project No. 457509854.

Helium radiograph, 95 MeV/u, around 1000 ions per spot

10/24/2024 |Page 28

FLASH WORKSHOP 2025

THE ROLE OF OXYGEN IN FLASH RADIATION THERAPY

HEIDELBERG (GERMANY), JULY 1ST – JULY 3RD, 2025

GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

Research for a Life without Cancer

SCIENTIFIC COMMITTEE

Joao Seco (Heidelberg, Germany)

Iuliana Toma-Dasu (Stockholm, Sweden)

Marie-Catherine Vozenin (Geneva, Switzerland)

Emanuele Scifoni (Trento, Italy)

PRECISION

