Simulation of online treatment monitoring in carbon therapy using mixed carbon helium beams

J. Hardt^{1,2,3}, A. Pryanichnikov⁴, N. Homolka^{1,3,5}, L. Martin^{2,4}, E. DeJongh⁶, D. DeJongh⁶, R. Cristoforetti^{1,2,3}, O. Jäkel^{1,3,7}, J. Seco^{2,4} and N.Wahl^{1,3}

¹Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
² Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
³ Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
⁴ Department of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
⁵ Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany
⁶ ProtonVDA LLC, 1700 Park St 208, Naperville, IL 60563, United States of America
⁷ Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany

Contact: jennifer.hardt@dkfz-heidelberg.de This work is funded by the Deutsche Forschungsgemeinschaft (DFG) – Project No. 457509854

Mixed Carbon-Helium Beam

- Radiation therapy with carbon ions Problem: Range uncertainties
- Simultaneous acceleration of carbon and helium possible
- Online range probe with a mixed Carbon-Helium(10%) beam

Mixed Carbon-Helium Beam Dose Calculation

Helium Kernel set for pencil beam dose calculation

- Based on carbon kernel set assumption: same emittance, energy spectrum
- Simulation with Monte Carlo (TOAPS)
- Scored deposited energy and LET

Calculation of combined RBE weighted dose:

• Combined dose weighted α and β values:

$$A_{ij} = \alpha_{ij}^C D_{ij}^C + \alpha_{ij}^{He} D_{ij}^{He}, \quad B_{ij} = \sqrt{\beta_{ij}^C} D_{ij}^C + \sqrt{\beta_{ij}^{He}} D_{ij}^{He}$$

• RBE weighted dose from effect:

$$\epsilon = A \cdot w + (B \cdot w)^2$$
, RBExD = $-\frac{\alpha}{2\beta} + \sqrt{\left(\frac{\alpha}{2\beta}\right)^2 + \frac{\epsilon}{\beta}}$

Mixed Carbon-Helium Beam Dose

10/24/2024 | Page 4

Simulation and Reconstruction of Radiographs

Score phase space of **primary Helium** ions at tracker position

From initial/final energy calculate WEPL = $R_{Init} - R_{Final}$

Reconstruct **particle path** and calculate intersection point with Isocenter plane

	\frown
	(\mathbf{A})
V	JC)

Calculate **mean WEPL** in each image pixel

Reconstructed radiograph of prostate case

Reconstruction of Patient Position

- Quality Assurance: Does the irradiated position of the patient conform to the planned position ?
- Recalculate and simulate radiographs for different patient setup error scenarios
- Evaluate MSE to 225 reference images (planning CT) → find minimum
- Accuracy < 1mm</p>

Investigation of strategies for intrafractional motion

- Relative motion between the tumor and the scanning beam causes deviations of the delivered dose distribution
- Good to know motion/ breathing Phase during irradiation
- minimum MSE
- Motion function: Segment spine and extract movement of COM of spine over time

Mixed Carbon-Helium Beam Range Problem

Helium range not always sufficient !

> Possible Solutions: different angle, deletion of spots, use of range shifters

Residual range analysis Lung

- 15 patients
- 5 gantry angles (0°, 45°/315°, 90°/270°, 135°/225°, 180°)
- Gantry angle 0[°]: 8/15 patients have helium stopping in patient
- All angles: 47/75 patients have helium stopping in patient

Selection of Range Shifters

Schematic visualization of the ray and bixel concept

10/24/2024 | Page 10

Selection of Range Shifters

Example Selection of Range Shifter Lung Patient

Lung Patient EW RaShi - Dose

Take Home Messages

- Developed a framework in matRad to calculate and simulate mixed beam treatment plans and corresponding radiographs
- The mixed Carbon-Helium beam method has a high sensitivity to WEPL changes inside the patient
- Motioning of anatomical changes
- Outlook:
 - Dose calculation and Simulation with range shifters
 - Adaption of proton radiograph detector for helium imaging

matRad User Meeting 2025

Date: 17-21.02.2025

