5<sup>th</sup> Ion Imaging Workshop 2024 Vienna, Austria

### **Single Plane Position Tracking Proton and**

### Helium Radiography: Feasibility Study

Lukas Martin, Alexander Pryanichnikov, Jennifer Hardt, Ethan A. DeJongh, Don F. DeJongh, Victor Rykalin, Stephan Brons, Oliver Jäkel, Niklas Wahl, Joao Seco

Contact: lukas.martin@dkfz-heidelberg.de



# Agenda

- 1. Introduction
- 2. Materials & Methods
  - Operation with using only single position tracking plane
- 3. Results
  - Computational study of Head phantom at Chicago Northwestern Medicine
  - Calibration and Data acquisition at HIT facility
  - Spatial resolution measurement
  - WET value measurement of Gammex phantom
- 4. Conclusion
- 5. Future Work and Outlook





### Introduction

- HELIOS (HELium Imaging Oncology Scanner)
- use  ${}^{12}C^{6+}$  for treatment and  ${}^{4}He^{2+}$  for imaging
- Simultanous acceleration due to similar charge/mass ratio





#### **General Purpose of the Project:**

- 1. Enhance particle therapy for lung and abdominal cancers
- 2. Develop helium radiography using existing proton imaging technologies
- 3. Improve treatment accuracy and patient outcomes





# **Materials and Methods**



TRANSFORMING PROTON THERAPY

- Standard configuration uses upstream/ downstream tracker with scintillating fibers of 1 mm width
- physical hit resolution of 0.5 mm, spatial resolution of 1 mm
- Residual range detector with PMTs, signal is weighted
- At therapy-level intensity, the front tracker saturates due to the high-intensity carbon beam, making it unusable



Removing the front tracker prevents damage but raises concerns about the impact on image quality





- With only back tracker, the software interpolates expected particle entry point from irradiation plan and source of pencil beam
- This can lead to inaccuracies when particles scatter within the object







# **Results**

Computational study of Head phantom at Chicago Northwestern Medicine 1.













#### 2. Calibration & Dataset Acquisition

 Performed calibrations for protons and helium across 22 different energies ~ 95 – 125 MeV/u to see how photons inside energy detector are distributed



Setup 1: Helium calibration with PMMA Block



3500

# **Setup 2**: Proton calibration without PMMA block

- Ideally would like to use setup without PMMA because it will generate even more fragments when particles traverse it
- For protons its not necessary to put PMMA block in front



hist

#### **3.** Spatial Resolution measurements for Helium



- 3D printed cubes (VeroClear-RGD810)
- $\rho = 1.18 1.19 \text{ g/cm}^3$
- Different spacing and depth of lines from 5 mm to 0.5 mm







- Reconstructed multi-energy helium Radiograph (HeRad) within root framework (100 MeV/u, 125 MeV/u, 145 MeV/u)
- Determination of WEPL value from MLP binning





- WET values evaluated over the y-range of  $x = 0 \pm 10$  mm
- Mean WET computed from 21 measurements at each y-coordinate
- Resolution assessed at cube line spacings of 5 mm, 4 mm, 3 mm, 2 mm, 1 mm and 0.5 mm





4. Measurement on WET accuracy



Gammex phantom with tissue-equivalent inserts



Multi-energy HeRad (125 MeV/u, 140 MeV/u, 160 MeV/u)



WEPL (cm)



Multi energy HeRad (125 MeV/u, 140 MeV/u, 160 MeV/u)

| Material      | Ground truth<br>[cm] | WET<br>measured [cm] |
|---------------|----------------------|----------------------|
| PMMA cylinder | 11.6                 | (11.58±0.02)         |
| CB2-30%       | 8.96                 | $(8.80 \pm 0.02)$    |
| Liver         | 7.49                 | $(7.60 \pm 0.02)$    |
| Brain         | 7.35                 | $(7.51 \pm 0.02)$    |
| Inner Bone    | 7.63                 | $(7.60 \pm 0.02)$    |
| CB2-50%       | 10.29                | $(10.25 \pm 0.05)$   |
| Solid Water   | 6.93                 | $(7.11 \pm 0.03)$    |
| Muscle        | 7.14                 | $(7.29 \pm 0.02)$    |
| Cortical Bone | 11.83                | $(11.26 \pm 0.03)$   |
| B-200 Bone    | 7.77                 | $(7.70 \pm 0.02)$    |



# Conclusion

- Computational study of Northwestern Medicine shows clear change in WET values despite the fact of not using data for 2 tracking planes
- Achieved spatial resolution of currently 3 mm
- Achieved WET value accuracy for gammex phantom in the order of mostly 1 2%
- Next iterations and implementation of better statistical cuts will improve current results



# Outlook



# Enhancement of image quality

- Implement better statistical cuts
- Increase number of measurements



10/24/2024 |Page 18 > Introduction >> Materials&Methods >> Results >> Conclusion >> Outlook



### Thank you for your attention!

