







# First experimental demonstration of generating mixed carbon and helium beams using a sequential injection scheme

<u>Matthias Kausel</u><sup>1,2</sup>, Elisabeth Renner<sup>2</sup>, Andreas Gsponer<sup>2,3</sup>, Claus Schmitzer<sup>1</sup>, Markus Wolf<sup>1</sup>

<sup>1</sup>EBG MedAustron GmbH, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria <sup>2</sup>Atominstitut, TU Wien, Stadionstraße 2, 1020 Vienna, Austria <sup>3</sup>Institute of High Energy Physics of the ÖAW, Nikolsdorfer Gasse 18, 1050 Vienna, Austria





### **Idea and motivation**

Within simultaneously accelerated mixed beam the helium ions have around 3 times higher penetration depth compared to the carbon ions.

10% helium causes only small increase in dose

 $\rightarrow$  in future: potentially online range verification possible



#### The **objective** is to ....

- generate •
- accelerate •
- slowly extract •

... a mixed helium and carbon beam into IR1 at MedAustron



### *Mixed beams in synchrotrons Requirements*



$$B
ho = rac{p}{q} = rac{m}{q} eta \gamma c 
ightarrow rac{d(m/q)}{m/q} \ll 1$$



ÖAW ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

© MedAustron

### **Ion combinations** *Mixed helium and carbon beams*







### **Ion combinations** *Mixed helium and carbon beams*



| <sup>4</sup> He <sup>1+</sup> and <sup>12</sup> C <sup>3+</sup>                        |
|----------------------------------------------------------------------------------------|
| $\frac{q}{m} \approx \frac{1}{4} \qquad \frac{d(q/m)}{q/m} \approx -6.5 \cdot 10^{-4}$ |
| Source ✔<br>LINAC X<br>Synchrotron ✔                                                   |
| LINAC can only accelerate $\frac{q}{m} > \frac{1}{3}$                                  |
|                                                                                        |





### **Ion combinations** *Mixed helium and carbon beams*



| <sup>4</sup> He <sup>1+</sup> and <sup>12</sup> C <sup>3+</sup>                        |
|----------------------------------------------------------------------------------------|
| $\frac{q}{m} \approx \frac{1}{4} \qquad \frac{d(q/m)}{q/m} \approx -6.5 \cdot 10^{-4}$ |
| Source ✔<br>LINAC X<br>Synchrotron ✔                                                   |
| LINAC can only accelerate $\frac{q}{m} > \frac{1}{3}$                                  |
|                                                                                        |





### **Sequential injection** An alternative approach



#### Sequential injection of <sup>4</sup>He<sup>2+</sup> and <sup>12</sup>C<sup>6+</sup> into the synchrotron!







Ionentherapiezentrum

# **Double multi-turn injection**





# **Double multi-turn injection**

Two multi-turn injections

- a) nominal helium injection
- b) helium kept at flat bottom





•

• carbon beam





# **Double multi-turn injection**

Two multi-turn injections

- a) nominal helium injection
- b) helium kept at flat bottom
- c) second orbit bump rises to lower amplitude, most of helium is scraped





• carbon beam





Ionentherapiezentrum

# **Double multi-turn injection**

Two multi-turn injections

- a) nominal helium injection
- b) helium kept at flat bottom
- c) second orbit bump rises to lower amplitude, most of helium is scraped
- d) only the helium is core left





# **Double multi-turn injection**

Two multi-turn injections

© MedAustron

- a) nominal helium injection
- b) helium kept at flat bottom
- c) second orbit bump rises to lower amplitude, most of helium is scraped
- d) only the helium is core left
- e) carbon injection from lower orbit bump amplitude







# **Double multi-turn injection**

#### Two multi-turn injections

© MedAustron

- a) nominal helium injection
- b) helium kept at flat bottom
- c) second orbit bump rises to lower amplitude, most of helium is scraped
- d) only the helium is core left
- e) carbon injection from lower orbit bump amplitude
- f) mixed beam generated via double multiturn injection





### **Implementation at MedAustron** Technical implications: Double cycle

#### • Double cycle necessary ...

• components expect to receive timing events in certain order e.g. two injection cannot be triggered if acceleration and extraction are not triggered in between

#### (I.) <u>first (helium) cycle</u>

- helium injection
- no capture and acceleration
- dummy triggers to keep components happy

#### (II.) <u>second (carbon) cycle</u>

© MedAustron

- carbon injection
- decreased injection bump amplitude
- synchrotron ramp and extraction



ÖSTERREICHISCH

Ionentherapiezentrum



15

### **Implementation at MedAustron** Technical implication: Injection energy offset



helium ions injected at 7.05 MeV/u
carbon ions injected at 6.95 MeV/u

 $\Delta(E/m) \approx 0.1 \,\mathrm{MeV/u} \rightarrow \Delta x_{D,\mathrm{max}} \approx 45 \,\mathrm{mm}$ 

Retuning the pre-accelerator cavities ...
 reduction RF voltage on *LINAC cavity* deceleration with the *debuncher cavity*

#### Helium ions at 7.01 MeV/u ...

• dispersive offset  $\Delta x_{D,\max} \approx 20 \text{ mm}$ • higher momentum spread → fluctuations in measured energy



# Schottky spectrum

Successful double injection

#### **Schottky** detector measurement after double multi-turn injection

© MedAustron

injection energy offset  $\rightarrow$  different revolution frequency

- sequential injection with <u>only helium</u> carbon dumped in injector
- sequential injection with only carbon helium dumped in injector
- sequential injection of *both ion types*

#### $\rightarrow$ identification possible!





17





### **In-room measurements** Radiochromic films

#### Radiochromic film in isocenter ...

mixed beam at 262.3 MeV/u
phase-displacement extraction
30 mixed beam spills
no time structure

o no absolute intensity

© MedAustron





MedAustron<sup><sup>1</sup></sup>

Ionentherapiezentrum



#### 0

#### © MedAustron Lehr- und Forschungsstandort der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften • Akkreditiert nach JCI

12

10

8

Ionentherapiezentrum

# In-room measurements

Silicon low-gain avalanche detector (LGAD)

600

500

400

300

200

100

-2

courtesy of Andreas Gsponer – ÖAW HEPHY

9

Detector Signal (mV)

#### 50 µm silicon LGAD in isocenter ...

- o mixed beam at 262.3 MeV/u
- phase-displacement extraction
  - three sweeps at around 100  $\mu s$  each
- o carbon and helium deposit different energy
  - $\rightarrow$  identification via detector signal amplitude
- o detector signal measured with oscilloscope
- o pile-up is a problem
  - only few ms of acquisition time
  - pile-up events discarded in offline analysis



MedAustror



### **In-room measurements** Silicon low-gain avalanche detector (LGAD)

#### • 50 µm silicon LGAD in isocenter ...

mixed beam at 262.3 MeV/u
phase-displacement extraction

- three sweeps at around 100 µs each
- carbon and helium deposit different energy
  - $\rightarrow$  identification via detector signal amplitude
- detector signal measured with oscilloscope
  pile-up is a problem
  - only few ms of acquisition time
  - pile-up events discarded in offline analysis

#### histogram of signal amplitudes

- sequential injection with <u>only helium</u> carbon dumped in injector
- sequential injection with <u>only carbon</u> helium dumped in injector
- sequential injection of <u>both ion types</u>

© MedAustron



#### courtesy of Andreas Gsponer – ÖAW HEPHY





## **Summary and Outlook**



#### First mixed <sup>4</sup>He<sup>2+</sup> and <sup>12</sup>C<sup>6+</sup> beam at MedAustron ...

generated by <u>sequential injection</u> into the synchrotron
 accelerated and extracted at 262.3 MeV/u
 detected via <u>radiochromic film</u> and <u>silicon LGAD</u> measurements

- Upcoming tasks are ...
  - o improving the overall *intensity* and *stability*
  - o investigate *slow extraction mechanisms* to optimize time structure of delivered beam
  - o <u>full time-resolved characterization</u> of the mixed beam





## Thank you for your attention!

#### Acknowledgements:

Elisabeth Renner

Hermann Fuchs

Andreas Gsponer

Albert Hirtl

Claus Schmitzer

Markus Wolf

**Thomas Bergauer** 

Felix Ulrich-Pur



22