A high flux beam-telescope for ion radiography and imaging applications

M. Babeluk, T. Bergauer, C. Irmler

Institute for High Energy Physics - HEPHY

5th Ion Imaging Workshop 2024

Oct 22nd 2024

Oct 22nd 2024 1 / 14

Ion Imaging

- A body part (our case phantom) exposed to the beam
- Incoming and outgoing trajectories measured via tracker = beam telescope
- Energy loss measured in calorimeter or Time of Flight detector

AUSTRIAN

Ion Imaging

- A body part (our case phantom) exposed to the beam
- Incoming and outgoing trajectories measured via tracker = beam telescope
- Energy loss measured in calorimeter or Time of Flight detector

Current Ion-CT Setup

Phantom

M. Babeluk, T. Bergauer, C. Irmler

Readout electronics ations Oct 22nd 2024

3 / 14

- Derived from current Belle II SVD detector
- Double sided silicon strip detectors:
- Designed at HEPHY for Belle SVD
- Manufactured by Micron
- $\bullet~$ Sensitive area: $5.1\times2.6\,cm^2$
- APV25 frontend chip and FADC backend
- Ambiguities at high particle fluxes ('Ghost hits')
- Not well scalable for larger detector area
- Max. readout speed: 30 kHz

The Belle II Experiment

M. Babeluk, T. Bergauer, C. Irmler A high flux

The Belle II Experiment

- Asymmetric $e^+ e^-$
- $\sqrt{s} = M_{\Upsilon(4S)} = 10.58$
- World record peak lur
- Planned: further incre

M. Babeluk, T. Bergauer, C. Irmler

- $\bullet\,$ Planned for LS2 \sim 2030, CDR published 2024 $\,$
- 5 straight layers with Depleted Monolithic Active Pixel Sensors
- Identical chips on all layers: Optimized BELIe II pIXel sensor
- Different features enabled on different layers
- L1 & L2 (iVTX):
 - All silicon ladders
 - Air cooling (constrains power)
- L3 to L5 (oVTX):
 - Carbon fiber support frame
 - Cold plate with liquid cooling

	L1	L2	L3	L4	L5	Unit
Radius	14.1	22.1	39.1	89.5	140.0	mm
# Ladders	6	10	8	18	26	
# Sensors	4	4	8	16	48	per ladder
Expected hitrate*	19.6	7.5	5.1	1.2	0.7	MHz/cm^2
Material budget	0.2	0.2	0.3	0.5	0.8	% X ₀

*: Large uncertainties due to beam background extrapolation, possible changes in IR (interaction region)

M. Babeluk, T. Bergauer, C. Irmler

DMAPS technology

- Avoid error-prone bump or wire bonding in hybrid sensors
- Lower material budget: thinner sensor
- High granularity \Rightarrow high spatial resolution
- Higher hit rate capability \Rightarrow faster data talking

M. Babeluk, T. Bergauer, C. Irmler A hi

A high flux beam-telescope for ion radiography and imaging applications

Oct 22nd 2024 7 / 14

real tracks

The OBELIX chip

- 464 rows and 896 columns
- $\bullet~$ Sensitive area: $3.0\times1.5\,cm^2$
- Timestamp resolution: $\sim 50\,\text{ns}$
- Up to 10 µs trigger latency
- $\bullet~\mbox{Power:}~\sim 200\,\mbox{mW}/\mbox{cm}^2$
- TID tolerance: 1 MGy
- $\bullet~$ NIEL tolerance: $5\times 10^{14}\,n_{eq}/cm^2$
- $\bullet\,$ Hitrates up to $120\,MHz/cm^2$
- $\bullet~$ Readout badwith $\sim 3\,\text{MHz}$
- Additional feature: Precision timing module ($\sim 2\,\text{ns})$

Covering Larger Areas

• iVTX: Innermost Two VTX Layers

AUSTRIAN

CADEMY OF

SCIENCES

- Self suppored all-silicon ladders
- 4 Chips per iVTX ladder
- $\bullet~$ Sensitive area: $12\times1.5\,\text{cm}^2$
- Minimal material budget: 0.2% X₀
- Air cooling
- For a beam telescope: 'unrolled' iVTX for each plane thinkable

EPH

Covering Larger Areas

M. Babeluk, T. Bergauer, C. Irmler

The TJ-Monopix2 Prototype

- Exclusive operation: blue or magenta region, not both
- TowerJazz 180 nm imaging process
- $\bullet~$ Sensitive area: $1.7\times1.7\,\text{cm}^2\text{, }512\times512\,\text{cm}^2$
- $\bullet~$ Pixel size: 33.04 \times 33.04 $\mu m^2,$ Timestamping 25 ns

M. Babeluk, T. Bergauer, C. Irmler

Oct 22nd 2024 10 / 14

AUSTRIAN

CADEMY O

TJ-Monopix2 Telescope

Correlation: Plane 1 with:

M. Babeluk, T. Bergauer, C. Irmler

A high flux beam-telescope for ion radiography and imaging applications

Oct 22nd 2024 11 / 14

- First test at MedAustron April 2024
- ⇒ Just to test the setup
- Telescope kept synchronization, very nice correlations
- Many data overflows: Bug in software found
- Caused inefficient processing on PC ⇒ data loss (overflow)
- Another test needed to test the fix (under planning)

Parameter	Current Tracker	TJ-Monopix2	OBELIX
Recordable hitrate	0.03 MHz	$\sim 0.5{ m MHz}$	$\sim 3{ m MHz}$
Hitrate tolerance		0.5 MHz	$120\mathrm{MHz/cm^2}$
Sensitive area	$5.1 imes2.6{ m cm}^2$	$1.7 imes1.7{ m cm}^2$	$3.0 imes1.5{ m cm}^2$
Channels	(strips) $512 imes512$	(pixels) $512 imes512$	(pixels) $896 imes 464$
Resoulution	$29 imes14\mu{ m m}^2$	$9.5 imes9.5\mu\mathrm{m}^2$	$9.5 imes9.5\mu\text{m}^2$
Pitch	$100 imes 50\mu { m m}^2$	$33 imes33\mu\text{m}^2$	$33 imes33\mu\text{m}^2$

Parameter	Current Tracker	TJ-Monopix2	OBELIX
Recordable hitrate	0.03 MHz	\sim 0.5 MHz	$\sim 3{ m MHz}$
Hitrate tolerance		0.5 MHz	120 H/Hz/cm^2
Sensitive area	$5.1 imes2.6{ m cm}^2$	100x faster data tal	$3.0 \times 1.5 \mathrm{cm}^2$
Channels	(strips) 512×512	(pixels) 512×512	(pixels) 0.96×464
Resoulution	$29 imes14\mu\mathrm{m}^2$	3x smaller area	$9.5 imes9.5\mu m^2$
Pitch	$100 imes 50\mu{ m m}^2$	$33 imes33\mu\text{m}^2$	$35 \times 33 \mu m^2$

3x/1.5x better resolution

- Factor 100 increased data rate capability
- ⇒ Previously 8 hour data taking reduced to 5 minutes (!)
- Smaller area covered with OBELIX telescope \Rightarrow but tiling possible
- Better spatial resolution (better than 10 µm)
- High hitrate tolerance allows upstream mixed-beam operation with selective trigger

ADEMY O

- DMAPS technology promises great advantages in ion radiography
- First tests with the TJ-Monopix2 R&D chip are promising
- More tests are needed to test tracking and efficiency
- The OBELIX chip will be well suited for a beam telescope
- OBELIX Development and verification is entering final stage
- Aiming submission early 2025

Backup slides

M. Babeluk, T. Bergauer, C. Irmler A high flux beam-telescope for ion radiography and imaging applications

Oct 22nd 2024 14 / 14

TJ-Monopix2 Data Aquisition System

- One DAQ board can connect to up to two chips
- DAQ Board connects to PC and Trigger Logic Unit (TLU)

 $\Box \Delta$

ADEMY O

OBELIX Block Diagram

- Column drain architecture
- Monitoring ADC
- Temperature sensors
- On-chip LDOs
- TRU: Pixel readout, trigger processing
- PTD: Part of TRU for precision
- TTT: Fast transmission in parallel for contribution to Belle II Trigger

OBELIX Trigger Group (TRG)

- Trigger memory: 112 Tigger Groups, for 8 columns each
- Sophisticated 2 stage memory design
- Stage 1: Pre-trigger buffer SRAM, low power
- Stage 2: Associative memory to match trigger, power hungy
- Buffer sizing driven by power and hitrate, evaluated with extensive simulations

The Current Vertex Detector

- Two technology system
- PXD:
 - 2 Layers of DEPFET pixel sensor
 - $\bullet~\sim 10\,\mu m$ spatial resolution
 - 20 µs integration time
 - \Rightarrow Cannot contribute to track finding
 - See <u>PXD Talk</u> from Jannes Schmitz

• SVD:

- 4 layers of double sided strip sensor
- 3 ns Cluster time resolution
- 3% Occupancy limit (6% with hit-time reconstruction + BG rejection)
- Expected occupancy up to 4.7% after LS2 (large uncertainty)
- ⇒ Little safety margin in occupancy
- \Rightarrow Trigger latency limited to 5 μs by SVD readout
 - See SVD Talk from Alice Gabrielli

OBELIX Key Requirements

- Matrix inherited from TJ-Monopix2
- See <u>CMOS Talk</u> from Lars Schall

2. Handling trigger latency of the Belle II experiment (up to $10 \,\mu s$)

- New implementation of digital periphery
- Simulation to validate performance

- 3. Power dissipation:
 - air cooling of inner layers
 - liquid cooling of outer layers

4. Little space for cables inside detector

- Optimized digital logic with optional features
 - On chip voltage regulators
 - 2 LVDS downlinks for groups of chips (Rx)
 - 1 or 2 LVDS uplink(s) per chip (Tx)

DELIN O

OBELIX Optional Features

5. Incresed timing resolution at expense of power

- Precision timing module in periphery (PTD)
- Offline timing annotation

6. Contribution to Belle II Trigger

- Independent fast data path
 - Fast coarse hit transmission

These features require significant power: Only switched on for liquid cooled layers L3 to L5

ADEMY O

Trigger System: Simulations

5 µs 10 us 12.5 µs

TRU Performance

- Simulation includes: clustering & charge/ToT conversion
 - ٥ Calibrated with TJ-Monopix2 results
- Power 10% above budget for 120 MHz/cm²
- Clock frequency or analog bias current could be reduced

Peripheral Time to Digital converter

- Hitor: all comparator outputs of one column in an OR-chain (asynchronous)
- PTD: precision timing better than Timestamp (50 ns)
- Sampling: 2.95 ns period (169.7 MHz DDR)
- Power hungry feature: disabled in iVTX
- Little overhead when disbaled (Little die space, clock can be turned off)
- Resolution limited by timewalk and PVT (process, voltage, temperature) variation
- Calibration necessary

AUSTRIAN

SCIENCES

CADEMY OF

- First week: Regular measurements with telescope (efficiency and angular scans for depletion)
- Second week: Timing measurements, parasitic to RD50 MPW3 Testbeam
- Beamtelescope with Alpide chips (Duranta)
- Spatial Resolution $< 10\,\mu m$ for all chips

Chip SN	Irradiation	Substrate
W02R05	None	Epi
W05R16	$p^+,~~5 imes10^{14}~{ m n_{eq}}$	Epi
W08R19	None	Epi
W14R12	None	Cz
Chip SN	Frontend	Efficiency
Chip SN W05R16	Frontend Normal	Efficiency 0.9999
Chip SN W05R16	Frontend Normal Normal Cascode	Efficiency 0.9999 0.9979
Chip SN W05R16	Frontend Normal Normal Cascode HV Cascode	Efficiency 0.9999 0.9979 0.9913

SuperPixel inpixel efficiency

The measurements leading to these and following results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

A high flux beam-telescope for ion radiography and imaging applications

AUSTRIAN

CADEMY OF

SCIENCES

OAV

- TDC module of BDAQ53 firmware measures delay between scintillator and Hitor
- TDC words inserted into data stream
- TDC data is matched to hits offline
- Whole chip has one Hitor line: ambiguities arise
- ToT is measured by both, TJ-Monopix2 and TDC module
- Therefore used to match and cut $(\pm 25 \text{ ns cut})$

AUSTRIAN

ADEMY O

Timing results

- Three corrections applied:
 - Column delay (Hitor)
 - Row delay (Hitor)
 - Timewalk
- Tail in distribution: wrong associations ۲
- Resolution: < 2 ns (unirradiated), < 3 ns (irradiated W05R16)

M. Babeluk, T. Bergauer, C. Irmler A high flux beam-telescope for ion radiography and imaging applications