# Reconstruction approaches for TOF-based proton radiography

A. Cherni<sup>2</sup>, Y. Boursier<sup>2</sup>, D. Maneval<sup>3</sup>, A. André<sup>1</sup>, M. Dupont<sup>2</sup>, M.-L. Gallin Martel<sup>1</sup>, L. Gallin-Martel<sup>1</sup>, A. Garnier<sup>2</sup>, J. Hérault<sup>3</sup>, C. Hoarau<sup>1</sup>, J.-P. Hofverberg<sup>3</sup>, **P. Kavrigin**<sup>1</sup>, C. Morel<sup>2</sup>, J.-F. Muraz<sup>1</sup>, M. Pinson<sup>1</sup>, and S. Marcatili<sup>1</sup>

<sup>1</sup> Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, 38000 Grenoble, France <sup>2</sup> Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France <sup>3</sup> Centre Antoine Lacassagne, 06200 Nice, France



# Particle therapy – Range monitoring



M. Jacquet et al. (2021), A. Andre et al. (2024)

- Hadrontherapy provides high ballistic precision due to Bragg peak
- Hadrontherapy requires incident particle range verification
- **Prompt-gammas (PG)** are emitted along the path of the incident particle
- PG energy ~ O(MeV), emission time ~ O(ps), vertex density ~ 0.01 [p<sup>-1</sup>cm<sup>-1</sup>]
- PG vertices are spatially correlated with path of the incident particle
  - => possibility of indirect range measurement

#### 2024-10-21

# **Prompt-Gamma Time Imaging (PGTI)**



• Measure Time-of-flight (TOF) =  $T_{stop} - T_{start}$ 

$$T_{proton}(\mathbf{r}_v, \mathbf{v}_p) + T_{PG}(\mathbf{r}_v, \mathbf{r}_d)$$

- Reconstruct PG vertex  $(\mathbf{r}_v)$  and proton velocity  $(\mathbf{v}_p)$
- Combine responses of all PG detectors

which increases detection efficiency

•  $\mathbf{v}_{p}$  depends on the materials in the target

 $\frac{\mathrm{d}v}{\mathrm{d}s} = \frac{\mathrm{d}v}{\mathrm{d}\gamma} \frac{\mathrm{d}\gamma}{\mathrm{d}E} \frac{\mathrm{d}E}{\mathrm{d}s}$ 

=> proton radiography based on  $v_p$ 

M. Jacquet et al. (2021), A. Andre et al. (2024)

# Time-of-flight Imaging Array (TIARA)



- **Beam monitor** plastic scintillator (1x25x25 mm<sup>3</sup>)
  - 100% detection efficiency
  - time resolution < 120 ps FWHM for 63 MeV protons
  - spatial resolution 1.8 mm  $\sigma$  for 63 MeV protons
- TIARA module array of 30 Cherenkov PbF<sub>2</sub> detectors (2x1.5x1.5 cm<sup>3</sup>)
  - time resolution 220 ps FWHM
  - high density => high detection efficiency
  - not sensitive to neutron background
- Coincidence Time Resolution : 251 ps FWHM
- Sensitivity : 1.65 mm at  $2\sigma$  for ~10<sup>7</sup> protons

M. Jacquet et al. (2021), A. Andre et al. (2024)

#### **Reconstruction** approaches



M. Lukac, G. Krylov (2017)

- **Reconstruction** of PG-vertices and proton speed profile:
  - deterministic (e.g. FISTA algorithm)
  - stochastic (e.g. evolutionary algorithm)
  - deep learning
- Evolutionary algorithm approach (this work):
  - Population is evaluated based on a defined cost function
  - At each iteration best solutions are selected
  - Best solutions are combined (crossover/recombination)
  - Best solutions are mutated
  - **Stochastic** algorithm => relatively slow, needs parallelism

2024-10-21

## Reconstruction with evolutionary algorithm



- Evolutionary algorithm implementation:
  - Input for each PG-vertex is **TOF** and PG-detector coordinates
  - Initial **V** is given by a simulation based on a treatment plan
  - For each data batch the initial X is based on current best V
  - Evolution is handled via **scipy.optimize.differential\_evolution** with physics-motivated constraints (**V** monotonically decreases)
  - Evolution minimizes the **cost function** ( $\sigma$ =100 ps):

$$\frac{1}{2\sigma^2}(T_{\rm input} - T_{\rm reco})^2$$

- **Termination condition** for a batch - either from a cost function convergence or a limit on the number of evolution iterations



- MC-simulation (GEANT4) of **70 MeV proton beam**
- Water sphere is the target
- Beam monitor records T<sub>start</sub>
- 30 PG-detectors, spherical arrangement
- Each detector records  $\mathbf{T}_{\mathsf{stop}}$
- **Treatment plan** pure water target, proton path length 41 mm
- **Treatment delivery** adding 10 mm air bubble, proton path length 51 mm







#### **Reconstruction tests**



- Initial V is based on the simulation with pure water,
  i.e. the treatment plan
- Reconstruction of the simulation with air bubble
  => treatment delivery monitoring
- Running the reconstruction with and without noise in the TOF input (noise  $\sigma$ =100 ps)
- Running 100 jobs in parallel with a limit on the number of iterations per batch
- Reconstruction time is ~O(hour) for

**5% convergence** => improvement is needed

#### **Reconstruction output**

**NO NOISE** 



WITH NOISE



#### Conclusions

- Data reconstruction for PGTI was implemented using an evolutionary algorithm
- Proton speed profile reconstruction => proton radiography
- The reconstruction was tested using an input from MC simulation of TIARA
- Proton speed profile reconstruction works with a noisy TOF data
- Stochastic reconstruction is slow and requires parallelism
- Next steps: Input TOF denoising, optimizations to decrease the computation time

#### References

- M. Lukac, G. Krylov, "Study of GPU Acceleration in Genetic Algorithms for Quantum Circuit Synthesis" (IEEE 47th ISMVL, 2017)

- M. Jacquet et al., "A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy" (Phys. Med. Biol. 66 135003, 2021)

- M. Jacquet et al., "A high sensitivity Cherenkov detector for prompt gamma timing and time imaging" (Scientific Reports vol. 13, 3609, 2023)

- A. Andre et al., "A fast plastic scintillator for low intensity proton beam monitoring" (in preparation, 2024)